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Background

» Anomaly detection
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Background

» Video Anomaly Detection
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Background

* Video Anomaly Detection

Normal frame Abnormal frame

Input(GT)
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INFP: INdustrial Video Anomaly Detection via
Frequency Prioritization (IJCAI 2025)
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 Contribution
- Industrial Video Anomaly Detection (IVAD) task& N &2 2 X[ Q2!
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Paper 1

e IVAD task 2t
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Paper 1

« VAD to IVAD
- =X|Z& 1 : Distribution Sparsity
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Paper 1

* IVAD solution
- =X|Z& 1 : Distribution Sparsity
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Paper 1

* IVAD solution
- =XN| 7 1 : Distribution Sparsity
- High-frequency energy/} =2 EG 0| & & weightE F 0{5}= trajectory filter K| 2t
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Paper 1

 [VAD solution

- =X| & 2 : Equidistant Periodicity & =XAl|& 3 : Light Sensitivity
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Paper 1
* IVAD solution

- =X| 2= 2 : Equidistant Periodicity & &=X| & 3 : Light Sensitivity
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Paper 1

 Method

= Overview
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Paper 1

 Method

= Overview
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Paper 1

* Method
= Multi-feature Fusion Module (MFM)
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Paper 1

* Multi-feature Fusion Module (MFM)
- Periodic informationd} lighting variation= ol 2°}7| ?/dH, MFM X| ¢t
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Paper 1
» Multi-feature Fusion Module (MFM)
- AMHQL 542 E CNN, LeakyReLU, GAP, FCE 0| &350 B
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Paper 1

» Multi-feature Fusion Module (MFM)

- Temporal Shift Module(TSM)= AFE5L0] temporal 82 & UM O 2 L AMG)
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Paper 1

» Multi-feature Fusion Module (MFM)
- Temporal Shift Module(TSM)= AFE5L0] temporal 82 & UM O 2 L AMG)
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Paper 1

» Multi-feature Fusion Module (MFM)

- Frequency & Temporal-domain 3 &2 & ZrZ X 2| ¢t
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Paper 1

» Multi-feature Fusion Module (MFM)
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Paper 1

 Trajectory Filter

- 173 = trajectory = el =2 0| = objectOl| S3t11, = background =
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Paper 1

 Trajectory Filter
- Frequency feature= ==0°}7| 9ol Of2f{et £€0|, FFT =3
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Paper 1

» Experiments
- Dataset : IPAD(arxiv 2024)

5 © ols}

- Industrial settingOf| focus®t 7+ & ¢} industrial video anomaly detection G| O] E
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Paper 1

» Experiments

- Main table
Method SO01  S02 S03 S04 SO5 S06 SO07 SO08 S09 S10 S11 SI2 ROlI RO2 RO3 RO04 Avg.
conAE[Hasan er al., 2016]  63.1 47.7 53.0 347 829 466 583 69.1 530 553 398 504 77.6 643 407 70.1 567
memAE([Gong eral.,2019] 632 506 65.6 49.5 788 459 579 847 657 599 494 507 779 650 41.6 70.7 6l.1
AstNet[Le and Kim, 2023] 67.7 520 61.0 51.6 804 541 545 826 598 557 478 60.8 798 668 42.1 67.6 615
DMADILiu er al., 2023] 559 553 479 479 693 61.0 669 875 69.7 67.0 560 558 795 685 43.1 63.1 622
V-Swin-T|Liu et al., 2022] 68.2 60.0 66.6 547 856 533 595 885 69.7 605 548 691 811 741 423 755 66.5
IPAD_VADILiu eral.,2024] 69.5 63.9 70.6 583 862 612 606 856 712 622 60.9 671 844 754 435 767 68.6
Ours 77.2 628 70.6 560 89.7 734 781 963 666 719 569 609 865 779 484 753 718
 — .
- 2= & ablation
Category | Baseline +Fusion +Filter +Fusion&Filter
Average ‘ 61.3 68.5 67.2 71.8
A szutta VDS
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Paper 1

Experiments
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Paper 1

« Experiments
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Paper 1

» Experiments
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Paper 1

» Experiments
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Towards High-Resolution 3D Anomaly Detection: A

Scalable Dataset and Real-Time Framework for Subtle
Industrial Defects (AAAI 2026 Oral)
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Paper 2

e Contribution

- High-resolution 3D anomaly detection dataset | 2F
- Simple3D K| 2F
-Z[aote| At B[S

- XE 20frame= X 1FSH= real-time inference M=

g S TSR .

SOGANG UNIVERSITY

M
o

VDS

-
=
m



Paper 2

 Motivation
-7|Z= 3D AD HIHE

- & & point cloudOf| M &2 =2 point(E-& 2 10007)E sampling

) . . . 500k Points
- Local neighbor "2 2 & encoding®}t & point group= T+

-2} groupO| anomaly score S &

- Reconstruction-based 3D AD EHHH = | (@)

-2t group= CH HSt= token(prototype token)2 2 H =t

- Transformer T2 & &3l O| & reconstruction T

- 2 & token2 reconstructionE token ZF2| XtO|Z A|£tSH0] anomaly score At

- Sparse group-level scorei= T A| point cloud 2 interpolationt| O] dense anomaly
2 M A St
map= c'oc o

- S} X| 2t O & interpolation 132 O] M|t Agt= B X|5t= O B4 Ql spatial

granularityS = 7| SHA| MSHA| L
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Paper 2

» Simple3D Method

= Overview

-CNN/VIT encoderg E-& 05X 21 handcrafted descriptors(ex. k-NN)& AFE 510 local

point feature ==

- ==t featureS = spatial hierarchies T 0| [IF2} aggregateStO| anomaly scoring

Prototype-based

- Mo Anomaly Detection
Multi-Scale Local Feature

Neighborhood Description Spatial Aggregation

Point Cloud

(3 Different Neighborhood Ranges  © Input Points  ® Sampled Points @ Normal Prototype
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Paper 2

» Simple3D Method

= Multi-Scale Neighborhood Description (MSND)

- Input point cloud(P € R™3)0]| LS} Z} pointOf| CHSH, k-NN search& & Sl point
Set(Ri):l'Lé-)I

- Various neighborhood scale 0| A 2| local point distributionol 7tX|+= complementary
informationg ZH-&05}7| {5l, 3 2 7H2| neighbor countE &3

;'s Multiple neighborhood counts = ‘4 /3
Z} point setOf| feature descriptors= &850 feature operator == S} 11 concatenateS} O

p01nto| multi-scale local feature representation= -

0] M= Sl 4 point= LSt 7|0ty S5 BF St representations WA E

-

Prototype-based
R Anomaly Detection
i Multi-Scale Local Feature
z i : : An ly Si
Point Cloud Neighborhood Description Spatial Aggregation ORELIFSE0ES

() Different Neighborhood Ranges  © Input Points  ® Sampled Points @ Normal Prototype @ Anomalous Prototype
R B TUdED VDS

SOGANG UNIVERSITY 35 LAB



Paper 2

» Simple3D Method
- Local Feature Spatial Aggregation (LFSA)

- Feature representation= 5|2 H 1 ot5t7| {8l K| 2t

- Point cloudOf| A| randomStA| t7H 2] pointE samplingSt! H neighbor2| MSND feature &
average aggregation =

3 O IH -2 receptive field& 2ot 59t fine-grained 8 2 & &&= feature A
‘j:=556._F S{IHOZ CHHMO|H o HO0| LU2tE

- Anomaly Detection
~Normal point cloud 22 E @02l 24 El point feature== normal prototype set T3

- Test point cloud|A] =& =l featureOf| CHSHO, normal prototype sett2| distance =
7|9t 2 = anomaly scoring

Prototype-based
Anomaly Detection

i Multi-Scale Local FZJ{J;e
z i : : An ly Si
Point Cloud Neighborhood Description Spatial Aggregation ORELIFSE0ES

() Different Neighborhood Ranges  © Input Points  ® Sampled Points @ Normal Prototype @ Anomalous Prototype
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Paper 2

* Simple3D Method

- Experiments

-Main table
Method — CPMF Reg3D-AD  Group3AD IMRNet ISMP GLEM PO3AD  MC3D-AD | Simple3D
Real3D-AD PR 24 NeurIPS°23 ACM MM’24 CVPR 24 AAAI'25 TASE’ 25 CVPR’25 [ICAI'25 Ours
O-ROC/P-ROC ‘ 62.5/75.9 70.4/70.5 75.1/73.5 72.5/- 76.7/83.6 75.0/76.7 76.5/- 78.2/76.8 ‘ 80.4/92.3
Method — M3DM-PM CPMF Reg3D-AD IMRNet ISMP GLFM PO3AD MC3D-AD | Simple3D
Anomaly-ShapeNet CVPR’23 PR 24 NeurIPS'23 CVPR 24 AAATI'25 TASE’ 25 CVPR’25 [ICAI'25 Ours
O-ROC/P-ROC ‘ 51.1/54.9 55.9/- 57.2/- 66.1/65.0 75.7/69.1 61.9/74.5 83.9/89.8 84.2/74.8 ‘ 86.0/92.9
Method — M3DM-PM  M3DM-PB  PaichCore-FP  PatchCore-FP-R  PatchCore-PM ~ IMRNet  Reg3D-AD  GLFM | Simple3D
MulSen-AD CVPR’23 CVPR’23 CVPR’22 CVPR’22 CVPR'22 CVPR 24 NeurIPS’23 TASE’ 25 Ours
O-ROC/P-ROC ‘ 62.8/58.7 70.5/61.1 86.0/64.0 83.3/62.0 84.0/60.5 60.1/46.7 7T74.9/64.1 T78.5/66.5 ‘ 88.2/80.3
Method — | PawchCore-FP PatchCore-PM  PatchCore-PB R3D-AD GLFM SimpleSD
Level i CVPR22 CVPR™22 CWVPR 22 ECCWV'24 TASE 25 Ours
Easy O8.3/56.5 57.2/57.3 35.5/51.6 56.3/483 57.7/67.7 | 75.6/77.3
Medium 63.6/54.1 55.8/532.6 46.6/50.3 50.8/50.7 55.0/57.3 | 68.6/65.5
Hard 6l.4/51.1 54.3/52.0 52.9/50.8 50.1/50.6 52.8/52.77 | 61.6/56.3
ALL 65.1/53.7 55.9/54.1 S0.0/51.4 53.6/408 558/58.7 | 68.6/66.2
” ﬁ.")é— CH 3.',‘-‘1‘- VDS
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Paper 2

» Simple3D Method

- Experiments
- AT}

FPS
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