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1) Wen, Bowen, et al. "Foundationpose: Unified 6d pose estimation and tracking of novel objects." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Introduction

* 6D object pose estimation

- 2D viewZF E| Camera ZtH A« Object ZtH

» Detailed Tasks

- Zero-shot, Model-free, Category-level pose estimation

Neural Object Modeling (§3.2)
(Model-free setup)

Reference images

Neural  Neural RGBD
object field  rendering

Geometry
Network {1(-}
—_ -

Model-free! (Unified)
ﬂ 447 CH 8k

SOGANG UNIVERSITY

\ 4

T

* 3D CAD Model
* Camera intrinsic

Zero-shot

71| 7t translatlon rotatlon _I_x-|
Ui X
1
. Y.
s-|lvi| =KR|t] ],
1 ' <
1

6DoF parameter estimation

category-level

open-set

instance-level

similar geometry
different texture

Category-level



Introduction

* 6D object pose estimation
- Application
- Robot manipulation
' Object ZHHA| 7| &2 2 T 0}O} S}
-AR/VR

i

H A, Cameras &0l robot ZtHA = H

r|r
F-III

;' Physically consistent AR overlay

- Autonomous Systems

.- Object-level 3D understanding for planning & interaction
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1) Moon, Sungphill, et al. "Genflow: Generalizable recurrent flow for 6d pose refinement of novel objects." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Introduction

» Render-and-compare method

- 2D-2D relative pose estimation 7| gt
-Rendered image2} query image= deep networkOfl & 25} residual pose estimation

- Initial pose update 2 residual pose estimation X update Ht=

4D Correlation Volume C GenFlow Update
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t
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Introduction
3D Gaussian Splatting

- Explicit scene representation by 3D gaussian modeling
-Mean, Covariance(Scale, Rotation) , Color, Opacity i-1
, o F,=) fiT;, Ti=][]00 - a)

= Tile-based rasterization ieN j=1

-Projection, Depth sorting, Alpha blending

—
/' Projection \
et 3 / '\
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e — | Initialization | —» \ / Tile Rasterizer | +—— mage

-
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ensity {ontro | —p Operation Flow  — Gradient Flow

(a)  Image Space 3D Gaussians (c) (d)
= Replication — Sorted 2D Gaussians — Cf Ca
Tilel c
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[Tile1r  Depn |
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| Tilel : Depth |
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Parallel Renderi
Tile2 : Depth | arafiel Rendering

Cr=aler +afea(l —af)
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Introduction

* Feature Field
- Field
-S| B = X xOf| O 2t fx) & HEH2 = Holoh b=
;' Radiance field, Temperature field, etc.
- Feature field

-a7to] ZF 2| X| 0| semantic feature vectorsS & &St field

5D Input Output
Position + Direction Color + Density

et (x3208)—>| [l [ [~ (RGBo) P
P

/)." Ra_v‘l‘@\&
’a"- -

Negative Values \\
(- sign)

< Neural Radiance Field > < Surface Distance Field >
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* From Sparse to Dense: Camera Relocalization with Scene-Specific Detector from
Feature Gaussian Splatting (CVPR 2025)
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STDLoc

e Preliminaries

- Camera Re-localization
- Estimating 6DoF camera pose to pre-built 3D scene map
-Challenges
;= Appearance change, Viewpoint difference, Perceptual aliasing
- Application

;' VR, Autonomous Driving, Robots navigation, etc.
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STDLoc

e Preliminaries

» Feature 3DGS
-3D Gaussian0| semantic feature 21X} =7 £
-2D foundation model 2| feature= 3D Gaussian2 £ distillation

- Rendered image2l Rendered featureO| CHSH joint optimization
-SAM| feature= distillationSt 3D & 7t&H 0 Al segmentation =3

loss

£ g e 5 & [ Camera | — » Ground Truth ﬁ?
STEILEETR L | Parallel € Image Image
MN-Dimensional i q
¥ Projection [ > ) Palrs( I___,l“ﬁ_ﬁ*__\ 2D Foundation Model
- Gaussian 7 ¥
. -
Rasterizer Rendered Feature H
4’.
- . «————| Feature Embedding
e S e | &
Adaptive Vol Speed-up L
Lt et “----=- Module [-------- ' | Operstion Flow —  Gradient Flow —»  Optional *"‘

Feature Field
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STDLoc

* Introduction

= Previous approaches
-2D-3D correspondence establish — PnP

.- Degrade in weak texture

- Dense matching with Point Cloud u fo v wllry re rs t z
:': Too much computation sfv|l =10 fy vo|]|ra re rg i g

- Direct regression 1 00 1TJLlra 72 7Ts G 1]
' Target scene scale H2}0|| L S O] 2{&
= Weak texture2| indoor scene Al E2 =

-Novel view synthesis
'+ Scene representation 2 2 AFE (NeRF feature, rendering inversion)
‘= Data augmentation
= [terative optimization (Render and compare)

ﬂ HAE TS VDS
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STDLoc

* Introduction
- End-to-end localization pipeline
- Initial pose estimation= ¢t ol BIH EEQ

- Feature field distillation &2

-_—

-Radiance + FeatureS Z 23} 3D scene prior 2H&

« 2D-3D matching / | I:||_|- Landmarks i ' _ Feature Field
! 4 A
- Sparse to Dense correspondence matching
= Scene-specific detector

-Landmark-aware key point detection L)

- Weak-texture 20| A = &2 recall

Query Image Stitched Localization Result
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1) DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection and description." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.

STDLoc

 Feature Gaussian Training

- Feature 3DGS 2| 2d foundation model distillation &
-RGB loss + Feature field loss
- SuperPoint! feature & -&

-Key point extraction and matching network 2| feature distillationSt & 2D-3D matching 7tS

Point

Image Pair SuperPoint Network Correspondence

| < Superpoint > < STDLoc optimization >
A | VDS I
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STDLoc

» Matching-Oriented Sampling

= Scene landmark Gaussian selection

- Known pose2| training imageS &l scene 2 = M7d

- Gaussian feature@} Sl & gaussian center projection ¥ X[ 2| 2D feature H| 1l

'« = training imageOl| A 2| similarity B O] score”/} &
- coverageg o AHE O X8t anchor =X Of| A landmark 4478
= Anchor®| k-nearest neighbor & 7F =2 score2| gaussian 4173

- Rich texture =0 landmark/t &S El= A= L X|

Anchor Sampling Anchor-Guided Selection

Score assignment Spatial distance Selection with
k-NN the highest score Low
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STDLoc

» Scene-Specific Detector

- 2D feature 2| landmark detector &F &

~“4-layer CNN with SiLU activation”= &0l &= X HE| 2| heatmap =
: Feature gaussian2| sampled landmark ¥ &2 LIEFE
o

- Sampled gaussian2| projection(center)= GT map2 £ XSSt self-supervised

- Binary cross-entropy &

~InferenceA| Ol = estimated heatmap Ol Non-Maximum Suppression (NMS

:': Sparse gaussian2f Spare feature= H| WSt M2 AL O 2 coarse pose T

)I-I_Q_
1o

Scene-specific o
Detector Projection

Edet
A Gradient Magnitude Non-max Suppression
Heatmap K GT Heatmap K
< NMS example >
R B THEED VDS
15 LAB

SOGANG UNIVERSITY



STDLoc

» Sparse-to-Dense Localization

- Sparse Stage

-Sparse gaussian, Sparse feature matching — PnP + RANSAC
- Dense Stage

~ Sparse stage2| initial pose= feature map rendering

- 1/8 down-sampled feature mapOl| Al T X coarse matching

;' Correlation matrix — Dual softmax — Mutual Nearest Neighbor (MNN)

/ \

1 1
P. = softmax(;Sc)mw -softmax(;Sc)m;. MEIIAMZ2O X|2F 0|2 [Tt of &
Query Image Sparse Stage Dense Stage
| A 2. MNN Match
L 11
A *' j"‘ N o ._! Edense
\w i , < 8 x8
i >
Extractor
« |1
" Wi
MNN Match
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STDLoc

» Sparse-to-Dense Localization

- Dense Stage

- Full resolution feature mapOf| A| coarse matching Z 1 refine

2=t 8x8 patchOf| A{ Bt matching CHA| =3 SHO] £|F 2D-2D correspondence &
‘= Correlation matrix — Dual softmax — Mutual Nearest Neighbor (MNN)
-Rendered depth map= &l 2D-3D correspondence £ H 2t = PnP + RANSAC

- Dense stage= iterativeStH| BH5510 H& et

Query Image

Dense Stage
.. MNN Match

M,

l_m gdcnsc

8 x8

e | <
oo | W | R
| ==\ W&/

Sparse Stage

Dense Feature
Extractor

MNN Match
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STDLoc

» Experiments

- Training & Localization Details
-Loss
:>RGB loss: L1 + SSIM
:'= Feature loss: L1
- Feature rasterization 23 2}
;= Gaussian feature render T & L2 normalize
- Training setup
:2 30k iteration, RTX4090 7| scene's 90min
-Dense stage iteration
:'=~4 1teration
- Feature map resolution

;' Max side 640
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STDLoc

» Experiments

= Quantitative Results

- Sparse stage2| initial pose 2L E & &2 recall &3

A

Stage Err.[[cm/°]  5m 10°7

Image Retrieval 586/7.9 48.2%

Sparse 13.8/0.21 99.6 %

Sparse + Dense (RGB) 15.3/0.3 99.4%

Sparse + Dense (Feat.)  10.1/0.14 99.4%
Method Chess Fire Heads Office Pumpkin RedKitchen Stairs Avg.|[em/®]
AS (SIFT) 3/0.87  2/1.01 1/0.82  4/1.15  7/1.69 5/1.72 4/1.01 3.71/1.18

2 HLoc (SP+SG)  2.39/0.84 229/0.91 1.13/0.77 3.14/092 4.92/130 422139 505141  3.31/1.08
DVLAD+R2D2  2.56/0.88 2.21/0.86 0.98/0.75 3.48/1.00 4.79/128 421/1.44 4.60/1.27 3.26/1.07
DSAC* 0.50/0.17 0.78/0.29 0.50/0.34 1.19/0.35 1.19/0.29 0.72/0.21  2.65/0.78  1.07/0.35

& ACE 0.55/0.18 0.83/0.33 0.53/0.33 1.05/0.29 1.06/0.22 0.77/0.21  2.89/0.81  1.10/0.34

&% NBE+SLD 0.6/0.18 0.7/026 0.6/035 1.3/033 15033  08/0.19  2.6/0.72 1.16/0.34
NeuMap 2/0.81 3/1.11 2/1.17  3/098  4/1.11 4/1.33 4112 3.14/0.95

,, DFNetNeFeSso 2057 2074 2128  200.56  2/0.55 2/0.57 5/1.28  2.43/0.79

Q CROSSFIRE 1/0.4 5/1.9 3/2.3 5/1.6 3/0.8 2/0.8 12/1.9  4.43/1.38

& PNeRFLoc 2/0.80  2/0.88 1/0.83 3/1.05  6/1.51 5/1.54 32/573  7.29/1.76

2 NeRFMatch 0.95/0.30 1.11/0.41 1.34/0.92 3.09/0.87 2.21/0.60 1.03/028 9.26/1.74 2.71/0.73
STDLoc (Ours)  0.46/0.15 0.57/0.24 0.45/0.26 0.86/0.24 0.93/0.21  0.63/0.19  1.42/0.41  0.76/0.24

A szugka
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STDLoc

» Experiments

- Qualitative Analysis

p E
B BB b A

(left) query feature map
(middle) rendered feature map
(right) stitched image

a) SuperPoint Detector. b) Scene-specific Detector.
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STDLoc

» Experiments

= Qualitative Analysis — failure cases
~Floater2 !9t artifact2 9ISl dense stageO| Al 25|12 50| A BO{X|= 8%

Sparse stage Dense stage

187/37

10.9/0.04 7510/91

< translation error(cm) / rotation error(°®) >
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» Gaussian Splatting Feature Fields for (Privacy-Preserving) Visual Localization
(CVPR 2025)
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GSFFs

* Introduction

- Gaussian Feature Fields

-== 0 A | 2t5t= A2 feature field

- Geometry structure Zt¥ & Pose H2}0| Ao HYIZ2 &0t E R
- Joint optimization of image encoder and feature field

- Privacy preserving localization ! 24

Pose 3D Gaussians
| P
~ Spatial C
L) Spectral el N
Clustering K “Yan
guam— - X y
P Prototypes P 7 /
@ i (
]
i
™ Im Gaussian labels Scale aware
§ ammnx[oxp(g)) encoding
o — N
& e N
Training Image, Known Pose ERbHHERRY
s —— l ﬂ — N _\,:\\g\’\‘\\u
—% ﬁm\
Volumetric Features G Triplane
j =
R HABTHE
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1) Yu, Zehao, Torsten Sattler, and Andreas Geiger. "Gaussian opacity fields: Efficient adaptive surface reconstruction in unbounded scenes." ACM Transactions on Graphics (ToG) 43.6 (2024): 1-13.

GSFFs

» Scene Representation
- Gaussian Opacity Fields! (GOF)
-HEH Y SHO| H5Y surface 32} 3D X[ E querying0| 7SSt & GS &5
-Ray Tracing based Volume rendering
- Ray-gaussian intersection & RayOi| Cif ©F Gaussian2| contribution & 7t

'« Contribution, view-dependent color= alpha blending

mujnu

of
r|>
o
Ofm
o
-+
rof

v'View-dependent colori= spherical harmonics coefficient

Opacity along the ray
1D Gaussian Ve

Camera I Jép . Ckr = XL: Z Ci,m,k}?m{:v)

Center 1
: Ray =0 m=—I
|
I

3D Gaussian

Maximum at t* = ff—f

K k-1
. . ¥ "ID ) 5l
contribution &(Gk, 0,1) = G~ (17) c(o,r) = Z ¢k @ E(G, 0,1) H“ - aj&(Gj,0,1))
k=1 Jj=1
intersection
R HAE U
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GSFFs

» Scene Representation
= Gaussian Opacity Fields (GOF)

- Depth distortion regularization
;':rayO0| M Gaussian contribution2| 70| &40 penalty £ O
s: @2 rayd 7|0 SH= GaussianO| 2 H A = H| =Bt depthE 7| =& K| <f

Ly = Z wiwjlt; —tjl
L,j

-Normal consistency regularization
= Gaussian2| normal} Rendered depthE &0l ¥ = normalO| Z€O0tX| =& K| <f
m o
O

vray-Gaussian intersection Of| A{ 2| O| normal= Gaussian normal £ "3 2

‘- intersection @HO| AN HEH HEHHY }fgﬁcﬁéHﬂgg Sh20| Q& &

v & = ray0| Al gaussianO| -jrc-x St= normal2 St =

Ly = Za’i(1 _n;rN)

wudkan
"' SOGANG UNIVERSITY 25
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GSFFs

» Scene Representation

= Scale-aware feature encoding (Volumetric Feature Extraction)

- Triplane grid feature &'

T
//A‘

‘ = O
;= Parameter 2 &

e

)

N

;'= Spatial inductive bias, Scale-aware encoding
-Radial Basis Function (RBF) kernel
;' 2k 3D Gaussiane triplaneOf| 2D ¢ K(x,¥) = exp(—7llx — y|l3) Triplane

v2D Gaussian= 7S X2 SilY BHO| grid2 & H feature 7S

/4%

oM HHOA Y2 featurel] Bt = SHE 3D Gaussian2| volumetric feature £ AFE

-3D Gaussian2| 2| & AH L Z featureOf 21 HISF
-3D Gaussian0]| volumetric feature &Y £ GOF2l = LSt rasterization 4t =2

;= Color terme feature 2 CH X[ @ = ray tracing + alpha blending

SOGANG UNIVERSITY 26
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GSFFs

» Scene Representation

» Contrastive loss

I-I_Q_

-2D image encoder feature mapt Rendered feature map < contrastive loss &}

- Self-supervised manner2 45 7t

(1) Contrastive pre-training

Pepper the |[|[] \‘
aussie pup » Er:r:ox(}ar i l l l
| S—

A T, | T | T3 W Ty

Y

> L LTy LT | LTy L Ty
—» I IyTy | IyTy | 1Ty | Iy
Image
» 1 I3yTy | 13Ty | I3T; 13T
ﬁ—’ Encodar > I 3Ty | 3Ty | 13T 3Ty
Ly Iy | |IT, | INT2 |ITs| .. |IvTx

< CLIP contrastive loss >

2
1 exp (F3P - F2P/7) _ 3D 2D 2D _ R3D
LNCE_—ZHWUEIlog( - A= (2, exp(F3 - F22/7)) (L, exp(F20 - FP /)
R B TUSED |VDS|
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GSFFs

 Prototypical Feature Regularization

= Spatial prototypes clustering

- Transform to graph (Delaunay triangulation = £ |

:': Gaussian center2

E—I—_l_
HAEE ¥

Jdefjz=z=z 7+

=
T

ALZF

=
.

2)

- Spectral clustering - Laplacian L of the sparse adjacency matrix

s:L=D-A 2 G|E[[H, Je{ = TX|™ QI energy, smoothness 2 S

< Graph example >

U szutta
S
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GSFFs

£~

Prototypical Feature Regularization

- Spatial prototypes clustering
-Spectral clustering - Cluster with Eigenvector
:': Laplacian2| eigenvectorE &off & HE £ k-mean clustering
- Prototype feature
= 2 cluster= CHESt= £HEY feature vector

;' Cluster kOl| = 5t= 2= Gaussian2| volumetric feature H

15 15 15
10 10 10
05 05 05
0.0 00 00
-05 -05 -05
-10 -10 10
15 15 15
-20 -20 20

15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15

< (left) data (middle) k-means clustering (right) spectral clustering >

ABTNE-D
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GSFFs

 Prototypical Feature Regularization

= Prototypical loss

E
JHU
ot
|I|>

- 2D feature, Rendered Feature pair/t & & 2t prototypeOi| Z7H7F X
- PixelOFCF optimal transportE S0l O clusterl| prototype EH Al 8o =2 A7
~Spatial priorZ feature space0 Bt 5= & 70| =

-5 283} + O| 2 privacy preserving localizationa ¢Sl A&

N 3D 20t
1 (exp(Fy'p F.. ' pn)/T)
Lpro = —E;—llug( B

= Multi-view consistency
_Chtst AIEOIA £ 28 3D pointS TERCHH AT fearure?} & E 2 guide
- HEHSHA| CHE viewO| M 2HEEl point2| feature 2 CH XS loss HE

R AW THEE D
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GSFFs

» Feature-based Localization

= Pose refinement

- & 9| &l Feature field& Solf ZIthHet A O 2 pose refinement 7t

- Initial pose estimation

‘= Retrieve closest database image

- Pose refinement Zt= CHE O, pose initialize= OF0Y| CHE &
- Backpropagation= & 2t pose update

- Parameterize 6DoF pose

L2 loss Al 4F 2 pose update

P* = min!’eSE(B)”FZD —FP(P,0)l3

R 447 CH 8k

SOGANG UNIVERSITY 31

SA 02 43

VDS



GSFFs

* Privacy-preserving localization

- Optimizing segmentation

- Privacy preservings ¢l texture 2 E B 5 AK|otD FESH= AO0| FH
-Pixel 2 £ clustersO| LB} logitTt2 =78

;s Segmentation map THE head= HEE ot5

- Clustered Gaussian=S S5l GT label M| &St CE loss 8 &
==

-2 A| 2D segmentation mapdt 3D label= Sl backpropagation

Lor ==y 1, - (log(8%) + log(S"))

uel

ﬂ % THdkan - VDS
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GSFFs

» Experiments

= Results
Model Chess Fire Heads Office Pumpkin Redkitchen Stairs
HLoc [60] 0.8/0.11/100 0.9/0.24/99 0.6/0.25/100 1.2/0.20/100 1.4/0.15/100 1.1/0.14/99 2.9/0.80/72
S DSAC*[4] 0.5/0.17/100 | 0.8/0.28/99 | 0.5/0.34/100 | 1.2/0.34/98 | 1.2/0.28/99 | 0.7/0.21/97 | 2.7/0.78/92
S ACE[6]) 0.5/0.18 0.8/0.33 0.5/0.33 1.0/0.29 1/0.22 0.8/0.2 2.9/0.81
ACE + GS-CPR [41] 0.5/0.15 0.6/0.25 0.4/0.28 0.9/0.26 1.0/0.23 0.7/0.17 1.4/0.42
NeFeS [14] (DENet [131]) 2/0.79 2/0.78 2/1.36 2/0.60 2/0.63 2/0.62 5/1.31
MCLoc [74] 2/0.8 3/1.4 3/13 4/1.3 5/1.6 6/1.6 6/2.0
= SSL-Nif [56] (DV) 1/0.22/93 0.8/0.28/91 0.8/0.49/71 1.7/0.41/81 1.5/0.34/86 2.1/0.41/75 6.5/0.63/49
E NeBFMatch [99] (DV) 0.9/0.3 1.3/0.4 1.6/1.0 3.3/0.7 3.2/0.6 1.3/0.3 7.2/1.3
GSplatLoc [68] (GSplatLoc) 0.43/0.16 1.03/0.32 1.06/0.62 1.85/0.4 1.8/0.35 2.71/0.55 8.83/2.34
GS-CPR [41] (DFNet) 0.7/0.20 0.9/0.32 0.6/0.36 1.2/0.32 1.3/0.31 0.9/0.25 2.2/0.61
GSFFs-PR Feature (DV) 0.4/0.19/95 0.6/0.26/98 0.5/0.36/94 1.0/0.31/97 1.3/0.38/85 0.6/0.23/93 25.1/0.63/32
GSFFs-PR Privacy (DV) 0.8/0.28/96 0.8/0.33/94 1.0/0.67/90 1.5/0.51/90 2.0/0.50/78 1.2/0.33/85 | 28.2/0.98/29
KC (F) OH (F) KC (P) OH (P) . .
Coarse only | 37.5/0.80 | 670/1.10 || 92.2/1.55 | 82.5/1.50  lriplane resolution=256
Fine only 22.6/0.32 | 55.1/0.77 || 28.0/0.45 | 151/0.96  Triplane resolution=1024
k-means 25.2/0.33 | 27.6/0.50 || 37.2/0.64 | 52.3/0.84 No spectral segmentation
No SOpt 23.5/0.30 | 23.4/0.45 31.0/0.45 | 30.8/0.57 Segmentation Optimization
No MVR 20.0/0.28 | 22.5/0.49 || 29.6/0.51 | 29.1/0.49 N ylti-View Regularization
No SE 23.5/0.31 | 21.9/0.42 || 27.0/0.42 | 26.0/0.47 )
Scale-aware feature Encoding
GSFFs-PR 17.9/0.27 | 21.4/0.41 || 24.3/0.39 | 25.6/0.49
A B
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Conclusion
« STDILoc

- Feature field2| pose estimation=22| 7| 2 & 2l =&
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* Transfer to 6d object pose estimation
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