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Anomaly Detection under Distribution Shift
[ICCV 2023]
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Introduction
Distribution shift
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Introduction

Distribution shift
«  Out-of-Distribution(OOD)
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Introduction

Contribution
1. AD ool j|Z2L8 BA| A7) ¢ #lx|uta +=
.24 39

:': 7|2 Anomaly Detection(AD) ¥-50°| ZF}31 ¢ 'Distribution Shift(F3E H3})
oA Y FHeH =& A7
Ao 5

::47FA] 29 g0l A (MVTec-C, CIFAR-10-C, MNIST-M, PACS) h-g-5to] £
A7 s W AD B9 e F7HE o 9= 2EstE Ad 2 75

A 5

' 7]129] SOTA AD R Elo|y} AHHA Q] OOD Generalization 7| H &S T&o] Zgol=
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Introduction

Contribution

2. Generalized Normality Learning (GNL) ®'*HE A|2t
- w3 Hstof| FH(Robust) £ FoFH 7] #13] GNLo|Zhs 22 ZH A ¢
L B 7HR A AYE
;': k5 A (Distribution-invariant Normality Learning)
vT}RL H|o] g J7(Augmentation) &0l 712 3 HIE AA

v'Normality-preserved Loss

. AEFQUO| HBIEEHE H A A2 LIEFLY = SH Al O|0|(Semantics)= HSHA| Y=
o) A =13

o
HM+= EF -T'-7F01|*1 2 2

;' 32 A (AD-oriented Test Time Augmentation)

vHIAE AJFof| £0]-2 00D A Z9] AEtU-S s o
Feature Distribution Matching (FDM) 7] &< 24%5 01
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Introduction

Contribution

3. drZFol H-‘—c-;- A}l A2 A=
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Method

Distribution—invariant Normality Learning (DINL)
- A 7

- glo] 8 &7 AugMix) + FAM 54 £41 34 (Normality-preserved Loss)
«  Augmix

I A& G4 oJu|A] x & A2 T4 o|v|A] x . & W=

2. Original image2} A 22 0]u|X] x;, & Encoder]] ¥
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Normal Image . \m
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Method

Distribution—invariant Normality Learning (DINL)

- Bottleneck
Lps: Global AH Q1 7123114 Q1 Semantics JHE k&5
- Decoder last block
* Liow r: Local ZH.Ql Edge, Texture?} Z-2 Structure JHE Sk

Augmented
Normal Image . \Ml
T() :
T(.)
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Normal Image
Liowg | ¢ (x): Feature vector

w(¢(x)): decoder?] T} R =3 feature
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< Training >
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Method

AD-oriented Test Time Augmentation (ATTA)

- EFDM (Exact Feature Distribution Matching)
 Test % Hlo] 8 2= 7ko] B EAZ 82
« Sample in Test Set

' NormalQl X AnormalQlX] X2+ HME(ODDY 71540 =)

- Random Normal Sample
':ID Normal datags 5292 B2

Sample in
Test Set

Bottleneck

Anomaly Score
Calculation

Random Normal A
Sample 4

< Inference >
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Method

AD-oriented Test Time Augmentation (ATTA)

-  FDM (Feature Distribution Matching)

A A3

« Test feature(C)Q} randomd}A] Eol& normal feature (V)9 &S L84+ AE

30 10 40

150 200 105

;= Test feature(C): 5 14 42, Random normal feature (V): 350 360 180

20 60 50

400 700 600

v Test feature(C): [5, 10,14, 20, 30, 40, 42, 50, 60]
v Random normal feature (V): [105, 150, 200, 180, 350, 360, 400, 600, 700]

- PG5 LA o] 2HF] teste feature S normal feature®] ZFo 2 WA

190 80 200
2:If, @ = 0.5) FDM(C): 55 107 221
100 380 325

FDM(C,V,«) : C;, = (1 — «)Cs, + V.
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Experiment

Result
ID 00D ID (0]0]D;
Method MVTec | Brightness Contrast Blur  Noise Method CIFAR | Brightness Contrast  Blur  Noise
Deep SVDD 69.98 55.18 50.07 68.82 59.11 Deep SVDD 64.62 59.13 5594 62.13 5446
f-AnoGAN 75.65 48.36 49.29 37.98 39.10 f-AnoGAN 70.25 54.62 57.23 60.74 51.76
KDAD 85.50 83.81 64.03 84.17 82.04 KDAD 84.21 7591 64.37 6349 56.87
RD4AD 98.64 96.50 94.12 98.9 90.14 RD4AD 84.62 75.89 65.34 66.67 58.82
Augmix 96.29 95.10 94.51 95.39 90.99 Augmix 82.83 74.15 62.48 6692 57.36
Mixstyle 98.58 96.60 94.45 08.27 88.92 Mixstyle 83.68 76.07 63.87 65.74 57.74
EFDM 98.64 96.78 94.77 98.25 89.29 EFDM 83.92 76.19 63.92 6481 57.63
Augmix+Mixstyle | 96.78 96.86 94.57 98.73 90.12 Augmix+Mixstyle | 83.87 76.02 65.55 63.89 58.04
Augmix+EFDM 97.04 96.83 95.21 98.11 90.18 Augmix+EFDM 82.96 75.73 64.39 63.83 57.14
_Jligsaw 73.97 73.36 67.88 73.88 7260 ligsaw 7129 66 86 6145 6012 5529
GNL (Ours) 97.99 97.43 97.46 97.77 94.10 Ours 82.29 77.94 66.13 64.04 61.51
<AUROC on MVTec > <AUROC on CIFAR - 10 >
A szugka VDS
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Experiment

Result

FDM(C,V, ) : C, = (1 — a)C;, + aVy,

90 A

95 - —
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851
= Photo
Y 801 Art
n:: Cartoon
<757 Sketch
701 @~ RD4AD
65 —h— Augmix

AUROC (%)
s 8 &
[ 1]

-
(=]
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65
EFDM -
60 - -~ GNL (ours) 60
1 2 0.2 0.4 06 0.8 1.0
Se\.rerlty Alpha
<varying severityof the ‘Contrast’ corruption > <AUROC results using varying o>
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Filter or Compensate: Towards Invariant Representation from

Distribution Shift for Anomaly Detection
[AAAT 2025]
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Introduction

Mat A0l Cigt X|X GNL(Generalized Normality Learning)
A A7 R

. Train ¥} inference &7 50| A k4 d|o] g (ID)2} E 27} tf2(00D) H|o| g Alo] <]
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Method

Distribution—Invariant Filter Module
1. S-T network 7Fe] A& &4 512
. DiSCo B &
X S AEE Bl = BE S5 EA
AL} S W E QA Aol o] FH Ho|E ZHL YT

2. BE 29 B4 oS At e 2 A=
- DilFi &

:: o|A} T &l (anomalous patterns)¥} B3 E3} A H (distribution-specific information)&
REdYydl= Ex 59 2
g dslo] AR HLHE 2L

3. Q5 AU QoA 9] et Aol AL 9l=
- MVTec, PACS, CIFAR-10 5 37}4] 0]A4+9] AD ¥l x|ul3 AF-S 5] 00D AH&H#ul ofuz}
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Method

DiSCo (Distribution—Specific Compensation Module)

. Ay g

- A ¥5E 2

:'+ S-T Network A}F0] 9] AlignmentS 2617 9]5] Studento]| A 2t "B E3)
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Method

DiSCo (Distribution—Specific Compensation Module)
- A5 4

| =
A E5Y 22

l

;- Image Attt o2 oot £ X & A gl5}7] 95)] Dynamic Convolution(DyConv)<
AF&-5to] AEFA AW A tSto]| 733) Instance NormalizationS 2 3¢y},

. X]'X} 515 (Residual Learning)
7129 52 A0 nERA FEE AR ] 490 Shoreu (A8 A7)
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Method

DiSCo (Distribution—Specific Compensation Module)

. AlS] £A]

- 9198 Student Networko]|A] AAJ & feature mapS DiSCo 5] 4
- DyConv
sz Input S5/ 9] w2} o 7§9] Convol] A2 ThE Attentione 0] 580 E HHE YA
- InstanceNorm (Instance Normalization)
s 2 o|u|A] & A EHE P I REHUAE ALt st
« LeakyReLU
BRELLER LR BRI

i A DiSC()

o

LeakyReLU

InstanceNorm | * M

‘ = -
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Method

DiSCo (Distribution—Specific Compensation Module)

Lo (Normality Consistency Loss)
E
;' AAFA] 52 (Normality Collapsing) B A]
- Original Image®@} Augmentation Image7t2] Cosine Similarity
'+ Noise, light7} U} 0] & image7} 7HA vj74 BE EA L 82517 93

(G PTG
=20 G PTIC P

n=1

)y

LCO LC 0 LCo

C,: Student network 2] u}x]2} Block
fP1: Ori Image @] Decoder 3 feature
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DlSCo

£21: Aug Image®] Decoder 23 feature
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Method

DiSCo (Distribution—Specific Compensation Module)

« L, (Distribution-Specific Compensation Loss)
.23
;' T-Network®@} S-Network A}0] 2] Misalignment =4 & af| 2
« Encoder’s feature map®} decoder’s feature mapZF2] Cosine Similarity
52 Ori®} Aug FA| o] A3¥5to] A¥Ist 45 4

N K fD
o= {1 ——' —}
Fe Z LI 2 || ZZ [FeallFed]

— H I | l - fEk: Ori image”} Encodero]| 4] WY& feature map
Luhs \J

LCo Leo | Lo . 7% Ori image Decodero]| A U2 2| £ feature map

£.P%: Aug image”} Encoderol| 4] U+ feature map

fFL?,’l‘: Aug image”7} Decodero| 4] U2 %|F feature map
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Method

OCBE (One-Class Bottleneck Embedding)

R

« Multi-scale Feature Aggregation
s Encoder?] 37 Hlo]o] 8L 16x 16 A ER E3F
Ot 2AIL O A HE Sty E g
- Bottleneck Compression

':3072 — 2048 channel 2 ZH ¢=
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Method

OCBE (One-Class Bottleneck Embedding)

»  Lgps (Distribution-Specific Compensation Loss)

g

:': Distribution-Invariant Normality
V871, Az, o] Z(Augmented View)7} 9101k OCBE(8 5 A H)= &3
S2r2 A el e] gEo 2 Lhefof gtk
- 07| M QM BT E EX 7Y

- AugOf| M ZHX| 2 Ql= FHEMK ori 7| E2 2 HFEA E

=

Fole

r i{l (fOL- 12 f?: OCBEZ AA ori image?] YH|J g
abs — —
n=1 £ 1A . £9.OCBEZ A aug image®] 9JH|] ¥E]
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Method

DilFi (Distribution—Invariant Filter)

. AP A

« Multi-scale Filtering

sempA ek 22 BAC) A noiseS A2 7] WA(GNL)T D] decodere] BE S0 A
AL EEPEES

« Normality X <& (Semantic Protection)
;' Q9] DisCoO]|A] Noise©]| TSt lossES F+HTHH o] 7] A= normal semantic A X0 A=

— . DilFi
BatchNorm
Convy —_—
[ 1]
RellJ —_—
BalchNorm
Conv —
” A4 Rk I T VDS
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Method

DilFi (Distribution—Invariant Filter)

*  Lpows (Distribution-Specific Compensation Loss)

° cﬂ'&]‘
3
:z Distribution shift® A4 A olsl= 7|&

vul A2+ decoder block 2] local A HZ o Z 0] noise(dl| 8 4)QA] object?] EA
PERER:

:': O] A decoderd]| WEHP L 7|& AG
va{t EE(Block 2, 3) 52 AR I} UF BZA AAR LLo|2E Zolfj7] o]H&
v x|at EE0]| A & ]5k= noise?} object?] AR E A

fP1: Ori image”} decoder 7} uFR] 2k blocko| 4] L}-2 feature map

an1: Aug image”} decoder 7} AFA| 9} blockOf| A L& feature map

N
(FP)T - (fD)
Liowy =Y Lt on]
ot nz;l{ TR

U szutta VDS
S
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Method

DilFi (Distribution—-Invariant Filter)

Lyse (Distribution-Specific Compensation Loss)

g
- e Y e 733} (Filter Strengthening)
v DilFiZ E8] 92 noise(5)].2.4)9} objectQ] EAE decodero]] A
- Filtering 7|52 Y H|o|E
vDecoderQ] Distributiong THdol+= 58S AT
C.(fPx): Ori image”} decoder©]| A k blocko]| 4] L} feature map
-_L — J | D1 DilFiZ 8] U2 ori image?] feature map (Distribution shiftg & 0]5}= 7| %)
-j i | ocee ﬁt - Cr(£P%): Aug image7} decoderoA] k blocko|A] 1} feature map
- - %*I L. L . kL”Tll : DilFig 53] U2 Aug image?] feature map (Distribution shift& % 2]sl= 7]1&)
i b
—/ﬁﬂ | - K N K
. Lse Lmse Lose = Z (Cr(fP*) — Z Z (Cr(f2*) - :f;z)z
o Lmer k=2 n—1k—2
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Experiment

Result
D 00D
Method Ori[ Br Co BI No| & = o

Deep SVDD (Ruff et al. 2018)  [70.0[55.250.1 63.8 59.1/60.6 Method A< A%

f-AnoGAN (Schlegl et al. 2019)  [75.7/48.449.3 38.039.1{50.1 i
KD (Salehi et al. 2021) 85.5/33.864.084.282.0179.9 ~ DeepSVDD (Ruff etal. 2018) 140.953.4 41.2 39.5]43.8
PatchCore! (Roth et al. 2022)  |99.1/96.092.197.293.9957  I-AnoGAN (Schiegl et al. 2019) |61.3150.2 52.4 63.8 | 56.9
SimpleNet! (Liu et al. 2023)  [99.4/90.671.791.676.1|85.9 KD (Sa,rlehl etal. 2021) 88.2162.9 62.6 514|663
PNIT (Bae, Lee, and Kim 2023) 99 6/87.867.690.2 66.1/82.3 PatchCore T{Rﬂth et al. 2022) 77.5157.5 56.5 52.1|60.9
RealNet' (Zhang, Xu, and Zhou 2024)99.7(92.395.4 95.6 76.7/91.9 SimpleNet' (Liu etal. 2023) |91.6|62.3 54.8 47.5) 64.1
RD (Deng and Li 2022) 98.6/96.594.198.990.1(95.7 RD (Deng and L1 2022) 81.5]61.1 60.3 55.1|64.5
RD++' (Tien et al. 2023) 98.7|96.1 95.2 98.2 84.4(94.5 RD++T (Tien et al. 2023) 86.9(61.7 65.2 60.6| 68.6
GNL (Cao, Zhu, and Pang 2023) [98.0(97.497.597.894.1(97.0 = GNL (Cao, Zhu, and Pang 2023) |87.7|65.6 68.0 62.4|70.9
GNL' (Cao,Zhn_and Pang 2023) 197 7|97 206 597 093 7|06 4 GNL' (Cao_7Zhn_and Pang 2023) |87 5|64 8 683 S81[697
FiCo (ours) 08.897.997.998.595.0(97.6 FiCo (ours) 89.7167.6 709 62.3|72.6

<AUROC on MVTec > <AUROC on PACS >
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Experiment

Result

D 00D
Method Ori| Br Co BI No
Deep SVDD (Ruff et al. 2018) [64.6/59.1 55.0 62.1 54.5/59.3
f-AnoGAN (Schlegl et al. 2019) |70.3/54.6 57.2 60.7 51.8|58.9
KD (Salehi et al. 2021)  |84.2|75.9 64.4 63.5 56.9|69.0
PatchCore' (Roth et al. 2022) |80.6/72.9 63.0 57.7 55.5/65.9

Avg.

RD (Deng and Li 2022) 84.6/75.9 65.3 66.7 58.8/70.3 Mothod D 00D Ave.
RD++! (Tien et al. 2023) 80.3/75.9 66.9 60.3 63.3/69.3 P A C S

GNL (Cao, Zhu, and Pang 2023) [82.3|77.9 66.1 64.0 61.5|70.4 ONL (Cao, 2w, and Pang 202 | o oo 2o ot

GNLT (Cao. Zhu. and Pane 2023)/79.2/76.9 67.5 63.2 64.6/70.3 DiSCo + DilFi 2051655 705 6161717

FiCo (ours) 80.5|77.8 69.2 63.8 64.4/71.1 FiCo 89.767.6 70.9 62.3|72.6
<AUROC on CIFAR - 10 > < Effectiveness of different component >
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