Enhancing Quantized Models with FP model Knowledge

2025 하계 세미나 - 25.07.03

Sogang University

Vision & Display Systems Lab, Dept. of Electronic Engineering

Outline

- Background
 - Quantization
- Papers
 - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [NeurIPS 2024]
 - Quantization without Tears [CVPR 2025]

Background

• Quantization

けいひっ

SOGANG UNIVERSITY

- 일반적으로 performance와 model size는 비례하는 경향이 있음
 - Model size $\uparrow \rightarrow$ inference time \uparrow , computational cost \uparrow
 - 메모리 용량이 제한적인 edge device 환경에서 한계가 존재함
- Full-precision \rightarrow Low-precision
 - Weight, activation을 lower precision으로 낮춘 후 연산을 수행하는 가속화 기법

- Fully-Connected layer에서의 연산 : f = WX + B
- Quantized FC layer에서의 연산 : $\hat{f} = \hat{W}\hat{X} + B = (s_W\bar{W})(s_X\bar{X}) + B = s_Ws_X(\overline{W}\bar{X}) + B$

INT8 Matmul

Background

• Quantization

< Fig 2. Comparison between QAT and PTQ >

- Quantization-Aware Training (QAT)
 - Quantization 적용 후 pre-trained model의 train dataset으로 retraining/fine-tuning하는 방식
 - Retraining/fine-tuning 과정에서 많은 시간이 필요하지만 PTQ에 비해 좋은 성능
- Post-Training Quantization (PTQ)
 - 소량의 데이터(calibration dataset)만으로 pre-trained model에서의 quantization parameter 설정
 - Calibration 적용하여 lower-bit에 mapping, 이후 inference 수행 → inference time \downarrow
 - 소량의 데이터만을 사용하기 때문에 적은 시간만이 필요하지만 QAT에 비해 낮은 성능

Background

- Linear quantizer
 - Ex) $Q(x) = \bar{x} = clamp\left(\left|\frac{x}{s}\right| + z, 0, 2^{bit} 1\right), DQ(\bar{x}) = \hat{x} = \bar{x} \cdot s$
 - Uniform distribution과 같이 x의 분포가 고루 퍼져 있는 경우에 적합
 - CNN-based model에서 주로 사용됨
- Non-linear quantizer
 - Ex) $Q(x) = \bar{x} = clamp\left(\left[-\log_2 \frac{x}{s}\right], 0, 2^{bit} 1\right), DQ(\bar{x}) = 2^{-\bar{x}} \cdot s$
 - Power-law distribution과 같이 x가 작은 값에 쏠려 있는 경우에 적합
 - Self-attention의 특성을 효율적으로 반영할 수 있어 transformer-based model에서 주로 사용됨

2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [NeurIPS 2024]

- Problem statements
 - 1. SR models이 컴퓨터 비전 분야의 다양한 task에 적용되고 있어 경량화가 필요함
 - 2. 기존에는 CNN-based SR model에 최적화되어 있는 quantization 방법론만이 존재함
 - 3. Transformer-based SR model에 적합한 형태의 quantization 방법론이 필요함
 - CNN과 transformer에서 자주 등장하는 activation distribution의 차이 고려
- Key contributions
 - 1. 최초로 Transformer-based SR model의 weight, activation을 관찰, 이에 적합한 방법론 제안
 - 2. Distribution-Oriented Bound Initialization (DOBI)
 - Weight, activation의 분포에 적합한 clipping range를 결정하는 최적화 방법론 제안
 - 3. Distillation Quantization Calibration (DQC)
 - Quantization으로 인해 하락한 성능을 FP model knowledge를 quantized model에 전이하는 방식 제안

- Objective
 - 본 논문의 목표 설정

- Transformer-based SR model에 적합한 quantization 방법론 찾기

- Target model
 - SwinIR²⁾

- SwinIR은 transformer-based SR model로, feature extraction 과정에서 SwinT layer를 활용
- 본 논문은 SwinIR을 target model로 설정, SwinT layer에서의 weight, activation을 분석

- Observations
 - Visualization of SwinIR weights & activations

< Fig 3. Visualization of activations >

'D

- Observations
 - Weight
 - 주로 평균이 0인 symmetric gaussian distribution 관찰
 - Activation

SOGANG UNIVERSITY

- FC1의 input, V의 output에서 평균이 0인 symmetric gaussian distribution 관찰
- FC2의 input, attention map에서 최솟값이 정해져 있는 asymmetric power-law distribution 관찰
- Quantization scheme
 - Weight, activation distribution에 맞는 quantization scheme을 적용하여 성능 하락을 최소화
 - → Distribution-Oriented Bound Initialization (DOBI) 제안

• Method

- Preliminaries
 - Quantization process

$$v_c = Clip(v, l, u), \qquad v_r = Round\left(\frac{2^N - 1}{u - l}(v_c - l)\right), \qquad v_q = \frac{u - l}{2^N - 1}v_r + l$$

- 만약 input v에 outlier가 존재한다면 quantization bin의 간격이 과하게 넓어질 수 있음
- 이로 인해 어떠한 값도 할당되지 않는 불필요한 quantization bin이 설정될 수 있음

- Lower-bound와 upper-bound에 해당하는 *l*, *u*를 적절히 설정 후 clipping 하여 outlier issue 해결 가능

- Method
 - Distribution-Oriented Bound Initialization (DOBI)

1)

- l, u를 적절히 설정하는 것은 결국 최적화 문제

$$\{(l_i, u_i)\}_{i=1}^N = argmin_{(l_i, u_i)} \sum_{i=1}^N \left| \left| v_i - v_{q_i} \right| \right|_2$$

-l, u의 후보군을 search space로 설정, MSE loss를 최소화하는 (l_i, u_i) 를 layer 단위로 연산

< Fig 7. Distribution-Oriented Bound Initialization (DOBI) >

OGANG UNIVERSITY

• Method

- Distribution-Oriented Bound Initialization (DOBI)

```
Algorithm 1: DOBI pipeline
Data: Data to be quantized v, the
         number of search point K, bit b
Result: Clip bound l, u
l \leftarrow \min(v), u \leftarrow \max(v);
min\_mse \leftarrow +\infty;
if v is symmetrical then
     \Delta l \leftarrow (\max(v) - \min(v))/2K;
else
     \Delta l \leftarrow 0;
end
\Delta u \leftarrow (\max(v) - \min(v))/2K;
while i \leq K do
     l_i \leftarrow l + i \times \Delta l, u_i \leftarrow u + i \times \Delta u;
     get v_q based on Eq. (1);
mse \leftarrow ||v - v_q||_2;
     if mse < min\_mse then
          min mse \leftarrow mse;
          l \ best \leftarrow l_i, u \ best \leftarrow u_i;
     end
end
```

Optimization problem : $\{(l_i, u_i)\}_{i=1}^N = argmin_{(l_i, u_i)} \sum_{i=1}^N \left| \left| v_i - v_{qi} \right| \right|_2$

1. *∆l, ∆u* 계산

- symmetric gaussian distribution인 경우 (*l_i*, *u_i*)를 모두 최적화 - asymmetric power-law distribution인 경우 *l_i*는 고정, *u_i*만 최적화

2. MSE loss를 최소로 하는 (*l_i*, *u_i*) 결정 - Search point *K*만큼 반복하는 동안의 최적의 (*l_i*, *u_i*) 를 탐색

- Method
 - Distillation Quantization Calibration (DQC)
 - Quantized model의 가장 이상적인 weight와 activation은 결국 FP model의 weight와 activation
 - FP model knowledge를 quantized model에 전이하는 knowledge distillation 적용 가능
 - Distillation loss for model output and feature map (*learnable parameter* = l_i , u_i)

$$L_{O} = \frac{1}{C_{O}H_{O}W_{O}} \left\| \left| O - O_{q} \right\|_{1}, L_{F} = \sum_{i}^{N} \frac{1}{C_{i}H_{i}W_{i}} \left\| \frac{F_{i}}{\left\| F_{i} \right\|_{2}} - \frac{F_{qi}}{\left\| F_{qi} \right\|_{2}} \right\|_{2}$$
$$L = L_{O} + \lambda L_{F}$$

< Fig 8. Distillation Quantization Calibration (DQC) >

• Experiments

Quantitative results

1)

Method	Bit	Set5 PSNR↑	$(\times 2)$ SSIM \uparrow	Set14 PSNR↑	· (×2) SSIM↑	B100 PSNR↑	$\stackrel{(\times 2)}{\text{SSIM}\uparrow}$	Urban1 PSNR↑	00 (×2) SSIM↑	Manga1 PSNR↑	09 (×2) SSIM↑
SwinIR-light [29] Bicubic	32 32	38.15 32.25	0.9611 0.9118	33.86 29.25	0.9206 0.8406	32.31 28.68	0.9012 0.8104	32.76 25.96	$0.9340 \\ 0.8088$	39.11 29.17	0.9781 0.9128
MinMax [22]	4	34.39	0.9202	30.55	0.8512	29.72	0.8409	28.40	0.8520	33.70	0.9411
Percentile [27]	4	37.37	0.9568	32.96	0.9113	31.61	0.8917	31.17	0.9180	37.19	0.9714
EDSR ⁺ [30, 39]	4	36.33	0.9420	32.75	0.9040	31.48	0.8840	30.90	0.9130	N/A	N/A
DBDC+Pac [39]	4	37.18	0.9550	32.80	0.9100	31.50	0.8908	30.00	0.9110	30.70	0.9692
2DQuant (Ours)	4	37.44	0.9594	33.41	0.9152	32.02	0.8937	31.84	0.9193	38.31	0.9761
MinMax [22]	3	28.19	0.6961	26.40	0.6478	25.83	0.6225	25.19	0.6773	28.97	0.7740
Percentile [27]	3	34.37	0.9170	31.04	0.8646	29.82	0.8339	28.25	0.8417	33.43	0.9214
DBDC+Pac [39]	3	35.07	0.9350	31.52	0.8873	30.47	0.8665	28.44	0.8709	34.01	0.9487
DOBI (Ours)	3	36.37	0.9496	32.33	0.9041	31.12	0.8836	29.65	0.8967	36.18	0.9661
2DQuant (Ours)	3	37.32	0.9567	32.85	0.9106	31.60	0.8911	30.45	0.9086	37.24	0.9722
MinMax [22]	2	33.88	0.9185	30.81	0.8748	29.99	0.8535	27.48	0.8501	31.86	0.9306
Percentile [27]	2	30.82	0.8016	28.80	0.7616	27.95	0.7232	26.30	0.7378	30.37	0.8351
DBDC+Pac [39]	2	34.55	0.9386	31.12	0.8912	30.27	0.8706	27.63	0.8649	32.15	0.9467
DOBI (Ours)	2	35.25	0.9361	31.72	0.8917	30.62	0.8699	28.52	0.8727	34.65	0.9529
2DQuant (Ours)	2	36.00	0.9497	31.98	0.9012	30.91	0.8810	28.62	0.8819	34.40	0.9602
		C F	(~9)	Cat14	$(\gamma, 2)$	D 100	(9)	I Jule out 1	00(1,2)	M	00 (9)
Method	Bit	Sets	(×ə)	Set14	·(×ə)	B100	(×3)	Urbani	$00(\times 3)$	Mangal	$09(\times 3)$
Method	Bit	Set5 PSNR↑	(×3) SSIM↑	PSNR†	SSIM↑	PSNR†	(×3) SSIM↑	PSNR†	SSIM↑	Manga1 PSNR↑	09 (×3) SSIM↑
Method SwinIR-light [29]	Bit 32	Set5 PSNR↑ 34.63	(×3) SSIM↑ 0.9290	PSNR↑ 30.54	SSIM↑ 0.8464	PSNR↑ 29.20	(×3) SSIM↑ 0.8082	28.66	00 (×3) SSIM↑ 0.8624	PSNR↑ 33.99	09 (×3) SSIM↑ 0.9478
Method SwinIR-light [29] Bicubic	Bit 32 32	Set5 PSNR↑ 34.63 29.54	(×3) SSIM↑ 0.9290 0.8516	Set14 PSNR↑ 30.54 27.04	0.8464 0.7551	B100 PSNR↑ 29.20 26.78	(×3) SSIM↑ 0.8082 0.7187	PSNR↑ 28.66 24.00	00 (×3) SSIM↑ 0.8624 0.7144	Manga1 PSNR↑ 33.99 26.16	09 (×3) SSIM↑ 0.9478 0.8384
Method SwinIR-light [29] Bicubic MinMax [22]	Bit 32 32 4	Set5 PSNR↑ 34.63 29.54 31.66	(×3) SSIM↑ 0.9290 0.8516 0.8784	Set14 PSNR↑ 30.54 27.04 28.17	0.8464 0.7551 0.7641	B100 PSNR↑ 29.20 26.78 27.19	(×3) SSIM↑ 0.8082 0.7187 0.7257	28.66 24.00 25.60	00 (×3) SSIM↑ 0.8624 0.7144 0.7485	Manga1 PSNR↑ 33.99 26.16 29.98	09 (×3) SSIM↑ 0.9478 0.8384 0.8854
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27]	Bit 32 32 4 4	Set5 PSNR↑ 34.63 29.54 31.66 33.34	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137	Set14 PSNR↑ 30.54 27.04 28.17 29.61	SSIM↑ 0.8464 0.7551 0.7641 0.8275	B100 PSNR↑ 29.20 26.78 27.19 28.49	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899	PSNR↑ 28.66 24.00 25.60 27.06	000 (×3) SSIM↑ 0.8624 0.7144 0.7485 0.8242	Manga1 PSNR↑ 33.99 26.16 29.98 32.10	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39]	Bit 32 32 4 4 4	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143	Set14 PSNR↑ 30.54 27.04 28.17 29.61 29.69	SSIM↑ 0.8464 0.7551 0.7641 0.8275 0.8261	B100 PSNR↑ 29.20 26.78 27.19 28.49 28.51	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869	PSNR↑ 28.66 24.00 25.60 27.06 27.05	000 (×3) SSIM↑ 0.8624 0.7144 0.7485 0.8242 0.8217 0.8217	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours)	Bit 32 32 4 4 4 4 4	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200	Set14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.87	0.8464 0.7551 0.7641 0.8275 0.8261 0.8338	PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970	28.66 24.00 25.60 27.06 27.05 27.53	0.8624 0.7144 0.7485 0.8242 0.8217 0.8391	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours)	Bit 32 32 4 4 4 4 4 4	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231	Set14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.87 30.12	0.8464 0.7551 0.7641 0.8275 0.8261 0.8338 0.8374	PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970 0.7988	Ofban PSNR↑ 28.66 24.00 25.60 27.06 27.05 27.53 27.69	0.8624 0.7144 0.7485 0.8242 0.8242 0.8217 0.8391 0.8405	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22]	Bit 32 32 4 4 4 4 4 3	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231 0.6260	Set14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.87 30.12 23.41	0.8464 0.7551 0.7641 0.8275 0.8261 0.8338 0.8374 0.4944	B100 PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970 0.7988 0.4182	28.66 24.00 25.60 27.06 27.05 27.53 27.69 21.70	0.8624 0.7144 0.7485 0.8242 0.8217 0.8391 0.8405 0.4730	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22] Percentile [27]	Bit 32 32 4 4 4 4 4 4 3 3	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231 0.6260 0.8426	Stel14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.87 30.12 23.41 28.02	0.8464 0.7551 0.7641 0.8275 0.8261 0.8338 0.8374 0.4944 0.7545	B100 PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970 0.7988 0.4182 0.7183	Orban PSNR↑ 28.66 24.00 25.60 27.06 27.53 27.69 21.70 25.32	0.8624 0.7144 0.7485 0.8242 0.8242 0.8217 0.8391 0.8405 0.4730 0.7349	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224 0.8537
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22] Percentile [27] DBDC+Pac [39]	Bit 32 32 4 4 4 4 4 3 3 3 3	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91 30.91	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231 0.6260 0.8426 0.8445	Set14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.87 30.12 23.41 28.02 28.02 28.02	0.8464 0.7551 0.7641 0.8275 0.8261 0.8338 0.8374 0.4944 0.7545 0.7538	B100 PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23 26.99 26.99	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970 0.7988 0.4182 0.7183 0.6937	Orban PSNR↑ 28.66 24.00 25.60 27.06 27.05 27.53 27.69 21.70 25.32 25.10	0.8624 0.7144 0.7485 0.8242 0.8242 0.8217 0.8391 0.8405 0.4730 0.7349 0.7122	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43 28.84 28.84	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224 0.8537 0.8403
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours)	Bit 32 32 4 4 4 4 4 3 3 3 3 3 3	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91 30.91 32.85	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231 0.6260 0.8426 0.8445 0.9075	Sel14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.87 30.12 23.41 28.02 28.02 29.33	0.8464 0.7551 0.7641 0.8275 0.8261 0.8374 0.4944 0.7545 0.7538 0.8200	B100 PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23 26.99 28.27 28.27	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970 0.7988 0.4182 0.7183 0.6937 0.7820	Ofbann PSNR↑ 28.66 24.00 25.60 27.06 27.05 27.69 21.70 25.32 25.10 26.36	0.8624 0.7144 0.7485 0.8242 0.8247 0.8217 0.8391 0.8405 0.4730 0.7349 0.7122 0.8036	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43 28.84 31.14	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224 0.8537 0.8403 0.9178
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours)	Bit 32 32 4 4 4 4 4 4 3 3 3 3 3 3 3 3	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91 30.91 30.91 32.85 33.24	(x3) SSIM↑ 0.9290 0.8516 0.8784 0.9143 0.9200 0.9231 0.9200 0.9231 0.6260 0.8426 0.8445 0.9075 0.9135	Sel14 PSNR↑ 30.54 27.04 28.17 29.61 29.87 30.12 23.41 28.02 29.33 29.56	(×3) SSIM↑ 0.8464 0.7551 0.7641 0.8265 0.8338 0.8374 0.4944 0.7545 0.7538 0.8200 0.8255	PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23 26.99 28.27 28.50	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7899 0.7970 0.7970 0.7978 0.4182 0.7183 0.6937 0.7820 0.7873	Ofban1 PSNR↑ 28.66 24.00 25.60 27.05 27.05 27.53 27.69 21.70 25.32 25.10 26.36 26.65	00 (×3) SSIM↑ 0.8624 0.7144 0.7485 0.8242 0.8217 0.8391 0.8391 0.8405 0.4730 0.7349 0.7122 0.8036 0.8116	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43 28.84 31.14 31.46	09 (×3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224 0.8537 0.8403 0.9178 0.9235
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22]	Bit 32 32 4 4 4 4 4 4 3 3 3 3 3 2 2	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.78 34.06 26.01 30.91 32.85 33.24 26.05	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231 0.6260 0.8425 0.9075 0.9135 0.5827	Sel14 PSNR↑ 30.54 27.04 28.17 29.61 29.87 30.12 23.41 28.02 29.33 29.56 24.74	(×3) SSIM↑ 0.8464 0.7551 0.7551 0.8275 0.8275 0.8275 0.8275 0.8274 0.4944 0.7538 0.8374 0.4944 0.7545 0.7555 0.8200 0.8255 0.5302	PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23 26.99 28.27 28.50 24.42	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7899 0.7869 0.7970 0.7988 0.482 0.7183 0.6937 0.7820 0.7873 0.4973	PSNR↑ 28.66 24.00 27.06 27.05 27.53 27.69 21.70 25.32 25.10 26.36 26.65 22.87	00 (×3) SSIM↑ 0.8624 0.7144 0.7445 0.8242 0.8217 0.8391 0.8405 0.4730 0.7122 0.8036 0.8116 0.5155	Manga I PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 24.68 24.64 31.14 31.46 24.66	09 (x3) SSIM↑ 0.9478 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224 0.8537 0.8403 0.9178 0.9235 0.5652
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) MinMax [22] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours)	Bit 32 32 4 4 4 4 4 4 3 3 3 3 3 2 2 2	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91 30.91 32.85 33.24 26.05 25.30	(x3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9200 0.9231 0.6260 0.8426 0.9075 0.9135 0.5827 0.5827 0.5677	Sel14 PSNR↑ 30.54 27.04 28.17 29.61 29.87 30.12 23.41 28.02 29.33 29.56 24.74 23.60	(×3) SSIM↑ 0.8464 0.7551 0.7551 0.8275 0.8275 0.8261 0.8338 0.8374 0.4944 0.7538 0.8200 0.8205 0.5302 0.5302 0.4890	PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.52 28.89 22.46 27.23 26.99 28.27 28.50 24.42 23.77	(×3) SSIM↑ 0.882 0.7187 0.7257 0.7899 0.7899 0.7869 0.7869 0.7870 0.7888 0.4182 0.7183 0.6937 0.7820 0.7857 0.7857 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7859 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7820 0.7873 0.4975 0.4975 0	PSNR↑ PSNR↑ 28.66 24.00 25.60 27.05 27.53 27.69 21.70 25.32 25.10 26.65 26.65 22.87 22.33	0.80 (×3) SSIM↑ 0.8624 0.7144 0.7144 0.7485 0.8242 0.8242 0.8247 0.8391 0.8405 0.4730 0.7122 0.8036 0.8116 0.5155 0.4965 0.4965	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43 28.84 31.14 31.46 24.66 24.65	09 (x3) SSIM↑ 0.9478 0.8384 0.8854 0.9274 0.9367 0.9289 0.6224 0.8403 0.9178 0.9235 0.5652 0.5682
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQUant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (22] Percentile [27] DBDC+Pac [39]	Bit 32 32 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2	Set5 PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91 30.91 32.85 33.24 26.05 25.30 29.96	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9143 0.9203 0.9231 0.6260 0.8426 0.8445 0.9075 0.8445 0.9075 0.5827 0.5677 0.5254	Sel14 PSNR↑ 30.54 27.04 28.17 29.61 29.69 29.73 23.41 28.02 29.33 29.56 24.74 23.60 27.53	(×3) SSIM↑ 0.8464 0.7551 0.7641 0.8275 0.8261 0.8374 0.4944 0.7545 0.7538 0.8200 0.8250 0.5302 0.4890 0.4890 0.7507	B100 PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23 26.99 28.27 28.27 28.27 28.27 28.72 23.77 27.05	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7988 0.4782 0.7183 0.6937 0.7820 0.7820 0.7820 0.7873 0.4973 0.49751 0.4751 0.47151	PSNR↑ 28.66 24.00 25.60 27.05 27.69 21.70 25.32 25.10 26.36 26.36 22.87 22.33 24.57	0.840 (×3) SSIM ⁴ 0.8624 0.7144 0.7485 0.8242 0.8217 0.8391 0.8405 0.7122 0.8036 0.4965 0.4965 0.7117	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43 28.84 31.14 31.46 24.66 24.65 27.23	0,9(x3) SSIM↑ 0,9478 0,8384 0,8384 0,8354 0,9303 0,9274 0,9367 0,9389 0,6224 0,85537 0,8403 0,9178 0,9255 0,56822 0,5882 0,8213 0,56822
Method SwinIR-light [29] Bicubic MinMax [22] Percentile [27] DBDC+Pac [39] DOBI (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (Ours) 2DQuant (22] Percentile [27] DBDC+Pac [39] DBDI (Ours) 2DQDI (Ours) 2DQDI (Ours)	Bit 32 32 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 2 2	Sets PSNR↑ 34.63 29.54 31.66 33.34 33.42 33.78 34.06 26.01 30.91 30.91 32.85 33.24 26.05 25.30 29.96 30.54	(×3) SSIM↑ 0.9290 0.8516 0.8784 0.9137 0.9137 0.9200 0.9201 0.6260 0.8445 0.9075 0.9135 0.5827 0.5827 0.8254 0.8321 0.8221	SSR14 PSNR↑ 30.54 27.04 28.17 29.61 29.62 23.41 28.02 29.33 29.56 24.74 23.61 27.53 27.74	(x3) SSIM↑ 0.8464 0.7551 0.7641 0.8275 0.8261 0.8338 0.83374 0.4944 0.7545 0.8200 0.8255 0.5302 0.5302 0.7507 0.7312	PSNR↑ 29.20 26.78 27.19 28.49 28.51 28.72 28.89 22.46 27.23 26.99 28.27 28.50 28.27 28.50 24.42 23.77 27.05 26.69 26.75	(×3) SSIM↑ 0.8082 0.7187 0.7257 0.7899 0.7869 0.7970 0.7970 0.7970 0.7970 0.7973 0.4182 0.7183 0.7873 0.7873 0.4973 0.4751 0.7136 0.6643 0.7187 0.7187 0.7187 0.7187 0.7899 0.7899 0.7899 0.7970 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7999 0.7977 0.7977 0.7999 0.7977 0.7977 0.7978 0.7977 0.7973 0.47751 0.7775 0.7775 0.7879 0.7875 0.7879 0.7875 0.7879 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7973 0.4775 0.7775	PSNR↑ 28.66 24.00 25.60 27.06 27.05 27.53 27.69 21.70 25.32 25.10 26.36 26.65 22.87 22.87 22.87 24.80 24.57 24.80	0.8624 0.7144 0.7485 0.8242 0.8217 0.8391 0.8405 0.4730 0.7122 0.8036 0.8116 0.5155 0.4965 0.7117 0.6797	Manga1 PSNR↑ 33.99 26.16 29.98 32.10 31.89 32.57 32.88 24.68 29.43 28.84 31.14 31.46 24.66 27.23 28.18	0.9 (x3) SSIM [†] 0.9478 0.8384 0.8384 0.8854 0.9303 0.9274 0.9367 0.9389 0.6224 0.8403 0.9178 0.9235 0.5652 0.5652 0.5652 0.8213 0.7993 0.7993

< Fig 9. SR performance – scale (\times 2, 3) >

Method	Bit	Set5 PSNR↑	(×4) SSIM↑	Set14 PSNR↑	· (×4) SSIM↑	B100 PSNR↑	(×4) SSIM↑	Urban1 PSNR↑	00 (×4) SSIM↑	Manga1 PSNR↑	09 (×4) SSIM↑
		ISIN	00101	TORK	551141	TOTAL	001111	TOTAL	00101	TOTAL	00101
SwinIR-light [29]	32	32.45	0.8976	28.77	0.7858	27.69	0.7406	26.48	0.7980	30.92	0.9150
Bicubic	32	27.56	0.7896	25.51	0.6820	25.54	0.6466	22.68	0.6352	24.19	0.7670
MinMax [22]	4	28.63	0.7891	25.73	0.6657	25.10	0.6061	23.07	0.6216	26.97	0.8104
Percentile [27]	4	30.64	0.8679	27.61	0.7563	26.96	0.7151	24.96	0.7479	28.78	0.8803
EDSR [†] [30, 39]	4	31.20	0.8670	27.98	0.7600	27.09	0.7140	25.56	0.7640	N/A	N/A
DBDC+Pac [39]	4	30.74	0.8609	27.66	0.7526	26.97	0.7104	24.94	0.7369	28.52	0.8697
DOBI (Ours)	4	31.10	0.8770	28.03	0.7672	27.18	0.7237	25.43	0.7631	29.31	0.8916
2DQuant (Ours)	4	31.77	0.8867	28.30	0.7733	27.37	0.7278	25.71	0.7712	29.71	0.8972
MinMax [22]	3	19.41	0.3385	18.35	0.2549	18.79	0.2434	17.88	0.2825	19.13	0.3097
Percentile [27]	3	27.55	0.7270	25.15	0.6043	24.45	0.5333	22.80	0.5833	26.15	0.7569
DBDC+Pac [39]	3	27.91	0.7250	25.86	0.6451	25.65	0.6239	23.45	0.6249	26.03	0.7321
DOBI (Ours)	3	29.59	0.8237	26.87	0.7156	26.24	0.6735	24.17	0.6880	27.62	0.8349
2DQuant (Ours)	3	30.90	0.8704	27.75	0.7571	26.99	0.7126	24.85	0.7355	28.21	0.8683
MinMax [22]	2	23.96	0.4950	22.92	0.4407	22.70	0.3943	21.16	0.4053	22.94	0.5178
Percentile [27]	2	23.03	0.4772	22.12	0.4059	21.83	0.3816	20.45	0.3951	20.88	0.3948
DBDC+Pac [39]	2	25.01	0.5554	23.82	0.4995	23.64	0.4544	21.84	0.4631	23.63	0.5854
DOBI (Ours)	2	28.82	0.7699	26.46	0.6804	25.97	0.6319	23.67	0.6407	26.32	0.7718
2DQuant (Ours)	2	29.53	0.8372	26.86	0.7322	26.46	0.6927	23.84	0.6912	26.07	0.8163

< Fig 10. SR performance - scale (× 4) >

Model	EDSR [30]	EDSR (4bit) [39]	SwinIR-light [29]	DBDC+Pac (4bit) [39]	Ours (4bit)
Params (MB) Ops (G)	172.36 823.34	21.55 103.05	3.42 16.74	1.17 4.19	1.17 4.19
PNSR on Urban100	26.64	25.56	26.47	24.94	25.71

< Fig 11. Complexity and performance – scale (\times 4) >

- Experiments
 - Qualitative results

1)

< Fig 12. Visualization comparison for scale (× 4) >

- Experiments
 - Two bounds after DOBI & DQC

1)

Ablations

Learning 1	ate PSNR↑	SSIM↑		Batch size	PSNR↑	SSIM↑		DOBI	DQC	PSNR ↑	SSIM↑
10^{-1}	37.82	0.9594		4	37.82	0.9594				34.39	0.9202
10^{-2}	37.87	0.9594		8	37.83	0.9594		\checkmark		37.44	0.9568
10^{-3}	37.78	0.9592		16	37.84	0.9593			\checkmark	37.32	0.9563
10^{-4}	37.74	0.9587		32	37.87	0.9594		\checkmark	\checkmark	37.87	0.9594
(a) Learning rate			(b) Batch size				(c) DOBI and DQC				
	< Fig 14. Ablation studies – learning rate, batch size, DOBI & DQC >										

Quantization without Tears [CVPR 2025]

- Problem statements
 - 1. The speed-accuracy dilemma
 - PTQ는 빠르지만 성능이 낮고, QAT는 느리지만 성능이 좋음
 - 2. Complexity
 - PTQ와 QAT 모두 수학적이며, hyperparameter에 의존적인 경우가 많음
 - 3. Missing generality
 - 특정 model에 최적화되어 있는 형태의 방법론들이 많음
- Key contributions
 - 1. Quantized model과 FP model의 architecture가 같아야만 한다는 고정관념에서 벗어나는 새로운 패러다임 제안
 - 2. QwT (Quantization without Tears) module 제안
 - Quantized model의 매 block 마다 1개의 linear layer를 연결
 - Quantization error를 최소화하는 형태로 linear layer의 weight를 초기화하여 성능 보상
 - FP model knowledge를 QwT module에 전이하는 distillation 방법론 제안

• Idea

- Quantized model과 FP model의 architecture가 완전히 동일할 필요가 없음
- Quantized block *l*^z마다 QwT module *cl*을 residual 방식으로 연결하여 성능 보완

 $-y^{QwT} = l^z(x_z) + c_l(x_z)$, $(x_z: quantized input)$

< Fig 1. QwT in one block >

- Objective
 - Quantization의 주요 목표

- Quantized block output와 FP block output의 차이를 줄이는 것

• 본 논문의 주요 목표

- QwT module은 Quantized block output과 FP block output 사이의 MSE loss를 최소화해야 함
- 결국 MSE loss를 최소화하는 최적화 문제

- Method
 - Weight initialization for QwT module

- QwT module의 weight는 MSE loss를 최소화하도록 초기화되어야 함
-
$$W' = [W|b], X'_{z} = \begin{bmatrix} X_{z} \\ 1 \end{bmatrix}, (W \in \mathbb{R}^{d_{out} \times d_{in}}, b \in \mathbb{R}^{d_{out} \times 1}, X_{z} \in \mathbb{R}^{d_{in} \times N}, 1 \in \mathbb{R}^{1 \times N}, Y_{z} \in \mathbb{R}^{d_{in} \times N})$$

 $W^{*} = argmin_{W'} ||Y^{QwT} - Y^{FP}||_{2}$
- $f(W') = ||Y^{QwT} - Y^{FP}||_{2} = ||Y_{z} + W'X'_{z} - Y^{FP}||_{2} \Rightarrow \nabla f(W') = 2(Y_{z} + W'X'_{z} - Y^{FP})X'_{z}^{T} = 0$
 $\Rightarrow W^{*} = (Y^{FP} - Y_{z})X'_{z}^{T}(X'_{z}X'_{z}^{T})^{-1}$

- 위 수식에 따라 MSE loss의 gradient를 0으로 만드는 W*를 QwT module의 weight로 초기화

- 1 epoch Fine-tuning for QwT module
 - QwT module의 weight가 초기화되어 있는 상태에서 1 epoch fine-tuning으로 성능 보상
 - Distillation loss for classification and class token

$$L_{cls} = -\sum_{i}^{N} t_{i} \log p_{i}, L_{dis} = \left| |T^{FP} - T_{z}| \right|_{2}$$
$$L = L_{cls} + L_{dis}$$

QwT¹⁾ • Experiments

• Quantitative results

Network	Method	#Bits	Size	Top-1
	Full-precision	32/32	88.2	81.4
	IGQ-ViT [†] [38]	4/4		73.6
	RepQ-ViT [27]	4/4	11.9	65.8
	RepQ-ViT + QwT	4/4	15.4	70.8
ViT-S	$RepQ-ViT + QwT^*$	4/4	15.4	72.9
	ĪGQ-VīT [†] [38]	6/6		80.8
	RepQ-ViT [27]	6/6	17.2	80.5
	RepQ-ViT + QwT	6/6	20.7	80.7
	$RepQ-ViT + QwT^*$	6/6	20.7	80.8
	Full-precision	32/32	346.3	84.5
	IGQ-ViT [†] [38]	4/4		79.3
	RepQ-ViT [27]	4/4	44.9	68.5
	RepQ-ViT + QwT	4/4	59.1	76.3
ViT-B	RepQ-ViT + QwT*	4/4	59.1	78.5
	IGQ-ViT [†] [38]	6/6		83.8
	RepQ-ViT [27]	6/6	66.2	83.6
	RepQ-ViT + QwT	6/6	80.4	83.9
	$RepQ-ViT + QwT^*$	6/6	80.4	84.0

Network	Method	#Bits	Size	Top-1		Network	Method	#Bits	Size
	Full-precision	32/32	22.9	72.2			Full-precision	32/32	113.2
	IGQ-ViT [†] [38]	4/4		62.5				4/4	
	RepQ-ViT [27]	4/4	3.3	58.2			RepQ-ViT [27]	4/4	14.9
	RepQ-ViT + QwT	4/4	4.2	61.4			RepQ-ViT + QwT	4/4	19.2
DeiT-T	$RepQ-ViT + QwT^*$	4/4	4.2	64.8		Swin-T	$RepQ-ViT + QwT^*$	4/4	19.2
	IGQ-ViT [†] [38]	6/6	-	71.2				6/6	
	RepQ-ViT [27]	6/6	4.6	71.0			RepQ-ViT [27]	6/6	21.7
	RepQ-ViT + QwT	6/6	5.5	71.2			RepQ-ViT + QwT	6/6	26.0
	$RepQ-ViT + QwT^*$	6/6	5.5	71.6			$RepQ-ViT + QwT^*$	6/6	26.0
	Full-precision	32/32	88.2	79.9			Full-precision	32/32	198.4
	IGQ-ViT [†] [38]	4/4		74.7			$\overline{I}\overline{G}\overline{Q}\overline{V}\overline{I}\overline{T}^{\dagger}\overline{[38]}$	4/4	
	RepQ-ViT [27]	4/4	11.9	69.0			RepQ-ViT [27]	4/4	25.8
	RepQ-ViT + QwT	4/4	15.4	71.5			RepQ-ViT + QwT	4/4	33.7
DeiT-S	$RepQ-ViT + QwT^*$	4/4	15.4	75.2	Swin-S		$RepQ-ViT + QwT^*$	4/4	33.7
	IGQ-ViT [†] [38]	6/6		79.3			IGQ-ViT [†] [38]	6/6	
	RepQ-ViT [27]	6/6	17.2	78.9			RepQ-ViT [27]	6/6	38.0
	RepQ-ViT + QwT	6/6	20.7	79.1			RepQ-ViT + QwT	6/6	45.9
	$RepO-ViT + OwT^*$	6/6	20.7	79.3			$RepO-ViT + OwT^*$	6/6	45.9

< Fig 2. Classification – ViT variants >

Quant Setup	Method	#Bits	Size (MB)	Top-1
	Full-precision	32/32	607.2	63.4
	$\overline{\text{Rep}Q}$ - $\overline{\text{ViT}}$ [27]	676	- 323.5 -	59.2
Vision	RepQ-ViT + QwT	6/6	336.8	60.3
	$\overline{\text{Rep}Q}$ - $\overline{\text{ViT}}$ [27]	878	- 345.3 -	62.9
	RepQ-ViT + QwT	8/8	359.5	63.0
	Full-precision	32/32	607.2	63.4
Vision	$\overline{\text{Rep}Q}$ - $\overline{\text{ViT}}$ [27]	6/6		29.8
& Text	RepQ-ViT + QwT	6/6	221.3	43.5
	$\overline{\text{Rep}Q}$ - $\overline{\text{ViT}}$ [27]	878		38.7
	RepQ-ViT + QwT	8/8	252.6	54.6

< Fig 3. Zero-shot classification – CLIP >

< Fig 4. Diffusion (ImageNet 256 x 256) – DiT-XL/2 >

Top-1

81.4

77.8

73.0 75.5

79.3

80.9

80.6

80.7

80.9

83.2 81.0

80.2

80.4

81.9 82.9

82.8

82.9

82.9

- Experiments
 - Qualitative results (image generation)

< Fig 5. Visualization (ImageNet 256 x 256) – DiT-XL/2 >

Conclusion

- 2DQuant¹⁾
 - Key contributions
 - 1. Transformer-based SR model에 적합한 quantization 방법론을 최초로 제안
 - 2. Weight, activation distribution에 적합한 lower-bound와 upper-bound를 최적화하는 방법론 제안
 - Limitations
 - 1. Optimal lower-bound, upper-bound searching에서 오랜 시간을 필요로 함
 - 2. 관찰에 의존한 방법론, 다른 형태의 distribution에서는 적합하지 않을 수 있음
 - 3. Transformer-based SR model에 quantization을 적용했을 뿐, SR task에 특화된 형태의 방법론이 아님

• Future works

- 1. Lower-bound, upper-bound searching 과정에 더욱 효율적인 searching algorithm 적용 가능
- 2. SR task에서 중요한 정보들을 보상하기 위한 distillation 방법론 설계

Conclusion

- QwT²⁾
 - Key contributions
 - 1. Quantized model과 FP model의 architecture가 같을 필요가 없다는 새로운 패러다임
 - 2. 오직 1개 linear layer의 weight 초기화, 1 epoch fine-tuning으로 기존 PTQ, QAT 방법의 성능을 능가
 - Limitations
 - 1. QwT module로 인해 model parameter의 개수가 증가함
 - 2. Real quantization 상황이라면 quantized model은 INT로 저장되는 반면 QwT module은 FP로 저장됨 ※ Mixed precision issue, 하드웨어와의 호환성이 낮을 우려가 존재함
 - Future works
 - 1. QwT module의 weight를 quantized model에 병합시켜 parameter 개수를 유지하도록 설계
 - 2. QwT module의 weight를 FP가 아닌 INT로 저장, 이로 인해 발생한 quantization error를 재보상

감사합니다

