Optical flow-based generalizable 6D pose estimation

2025년 하계 세미나

Sogang University

Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented By 장순원

Outline

- Introduction: 6D object pose estimation
- GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects
 - CVPR 2024
 - NAVER AI LABS
- RefPose: Leveraging Reference Geometric Correspondences for Accurate 6D Pose Estimation of Unseen Objects
 - CVPR 2025
 - SNU
- Conclusion

SOGANG UNIVERSITY

- 6D object pose estimation
 - Camera coordinate와 object coordinate간 translation 및 rotation 추정
 - Challenge: Occlusion, cluttered scene
 - 방향 A에서는 보이던 부분이 방향 B에서는 occlusion 발생으로 관찰이 불가능함

- 6D object pose estimation
 - Application
 - -Robot grasping, AR/VR, autonomous driving, etc.
 - Related fields
 - -3D object tracking, Relative pose estimation, SLAM, etc.
 - Current challenges
 - -Model-free, Unified model, Zero-shot, Multi-view approaches, etc.

- Taxonomy of 6D pose estimation
 - Regression
 - -Direct regression of 6DoF parameter with deep learning network
 - -Seen data의 시각적 패턴에 의존하여 generalization 성능 저하
 - -새로운 target object의 등장 시 높은 training cost 필요
 - Correspondence-based (key point matching)

-2D-3D correspondence key point matching \rightarrow traditional pose estimation algorithm

Render-and-compare

- Generalization to unseen objects
 - •새로운 물체의 3D CAD 모델만 존재한다면 학습 없이 pose estimation이 가능
 - Direct regression과 key point 2D-3D correspondence는 unseen object에서 accuracy 감소
 - 3D CAD model을 reference하여 pose를 추정하는 방법론 필요

- Render-and-compare method
 - 현재 추정된 pose로 rendering 된 2D 이미지와 query 이미지를 비교하여 refine
 - Classification \rightarrow Refinement
 - Pre-rendered template과 비교하여 coarse pose를 classification 형태로 추정
 - -Rendered image와 query image를 deep network에 입력하여 pose 변화량 regression
 - -Rendered image가 query image와 가까워지도록 반복적으로 업데이트
 - 두 이미지의 관계를 optical flow 형태로 추정하여 활용

• GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects (CVPR 2024)

• 기존의 대표적인 render기반 방식 네트워크

• OSOP

- 가장 유사한 template 선택 후 2D-2D matching을 통해 2D-3D correspondence 정의 후 PnP+RANSAC 적용

S; Rendered image 2D-3D
known information

- -2D-2D matching loss를 사용하여, 6D pose estimation에서는 suboptimal함
- MegaPose
 - 아래 두 과정을 통해 iterative pose update

응 현재 추정된 자세로 3D 모델을 렌더링하여 2D 이미지 생성

응 Input image, render image를 6d parameter regression 네트워크에 입력

✓Ground truth pose와 loss 계산

- Pose regression과정은 네트워크가 학습한 시각적 패턴, 즉 데이터에 의존하며 projective geometry를 직접적으로 활용하지 않음 → unseen object에 대한 성능 저하로 이어짐

- 기존 모델의 optical flow 사용 방식
 - 3D shape 정보를 활용하지 않고 단순 2D 이미지 간 비교는 suboptimal 할 수 있음
 - Optical flow는 2D-2D correspondence 정보를 보유
 - -Rendered image에 대한 2D-3D 대응은 알고 있으므로 이는 곧 2D-3D correspondence
 - -2D-3D correspondence를 안다면 geometry 기반 알고리즘을 통해 대수적으로 포즈 추정
 - Optical flow 사용 시 발생할 수 있는 문제점
 - 이미지의 밝기 변화량 즉, 겉보기 움직임을 추정하기 때문에 물리적으로 적합한 변화량이 아닐 수 있음

- 주요 특징
 - Optical flow 기반 pose refinement 방법론 고도화
 - -Optical flow에 3D shape constraint 부여
 - -Dense correspondence(flow)와 pose가 반복적으로 동시 업데이트
 - Differentiable PnP 알고리즘을 통한 end-to-end 학습
 - Disentangle loss / Confidence, pose sensitivity estimation / Cascaded structure

- Coarse pose estimation
 - 여러 각도에서 rendering된 574개의 template 중 하나를 선택
 - -GT pose로부터 positive, negative pair를 생성하여 BCE loss를 통해 classifier를 학습 -해당 classifier는 pose 적합도에 대한 점수를 생성하는 scorer가 됨
 - 효율성을 위한 GMM (Gaussian Mixture Model) modeling 및 sampling
 - -M개의 template만을 선정한 후, 상위 n개의 template으로 GMM modeling
 - Bounding box안에 대략적으로 위치하도록 translation을 대략 추정

- Pose refinement
 - GRU module from RAFT²⁾
 - Differentiable PnP
 - Pose2flow

- Pose refinement
 - RAFT²⁾
 - -Recurrent 방식의 GRU module을 사용하는 optical flow estimation model
 - 현재 추정된 optical flow에 대응하는 feature간의 correlation을 입력
 - 응 예상 대응점 주변의 이웃 값들을 가져와 종합하여 feature vector 생성
 - -Up-sampling을 위해 convex combination 사용
 - 응 GRU module이 출력하는 up-sampling mask로 3x3 grid에서 weighted sum 수행

- Pose refinement
 - Confidence를 추정하기 위한 certainty, pose sensitivity head를 추가
 - Supervised by different losses confidence factorization
 - Certainty *c^j*

SOGANG UNIVERSITY

- Occlusion 발생여부를 추정하며 ground truth와의 cross-entropy loss인 L_{cert}를 통해서만 update
- Pose sensitivity

- Pose refinement
 - Pose2flow: pose induced flow
 - -Optical flow 추정에 3D shape constraint를 주기 위한 핵심 부분
 - -RAFT²⁾ 구조는 현재 추정한 flow 정보를 look-up에 사용하여 다음 step에 반영

응 추정된 2D optical flow가 아닌 pose 기반 flow를 전달하여 3D shape 정보 활용

- Pose refinement
 - Pose estimation with PnP algorithm
 - Confidence weighted reprojection error minimize
 - -Backpropagation되는 loss function과는 구분되어 연산 식 작성을 위해 존재
 - $-3 \text{ LM step} \rightarrow \text{detach pose } P^* \rightarrow \text{Gauss-Newton method update } P_k^j$

응LM 연산을 unrolling하여 backpropagation 시 numerical instability가 존재

• Pose refinement

Cascaded architecture

-Multi-scale을 고려하여 high-low level 순서로 optical flow 및 pose refine

Shape-constraint	$\mathcal{L}_{flow}, \mathcal{L}_{pose}$	64.9	81.8	75.1	57.0	70.1	69.8
Shape-constraint + Cascade	$\mathcal{L}_{flow}, \mathcal{L}_{pose}$	65.7	82.3	75.0	58.9	69.9	70.4
Shape-constraint + Confidence factorization	$\mathcal{L}_{flow}, \mathcal{L}_{cert}, \mathcal{L}_{pose}$	64.5	81.8	75.3	57.3	70.5	69.9
Shape-constraint + Confidence factorization + Cascade	$\mathcal{L}_{flow}, \mathcal{L}_{cert}, \mathcal{L}_{pose}$	65.9	82.0	76.1	59.5	69.8	70.7

- Pose refinement
 - Loss function
 - -Flow loss L_{flow} : Ground truth optical flow와의 L1 loss
- $$\begin{split} \mathcal{L}_{pose} &= \mathcal{D}([\mathbf{R} | [\mathbf{t}_x^{\star}, \mathbf{t}_y^{\star}, \mathbf{t}_z^{\star}]^{\mathrm{T}}], \mathbf{P}_{gt}) \\ &+ \mathcal{D}([\mathbf{R}^{\star} | [\mathbf{t}_x, \mathbf{t}_y, \mathbf{t}_z^{\star}]^{\mathrm{T}}], \mathbf{P}_{gt}) \\ &+ \mathcal{D}([\mathbf{R}^{\star} | [\mathbf{t}_x^{\star}, \mathbf{t}_y^{\star}, \mathbf{t}_z]^{\mathrm{T}}], \mathbf{P}_{gt}) \end{split}$$

-Certainty loss L_{cert} : Binary cross entropy loss with certainty mask

- -Pose loss L_{pose} : Disentangled point matching loss
- Additional Strategy1: Multi-hypothesis strategy

-Coarse pose estimation에서 상위 n개 후보 선택 후 refine까지 수행

- 최종 pose 후보들을 다시 coarse model에 넣어 가장 높은 점수의 pose 선택

- Additional Strategy2: RGB-D input
 - -Input depth map을 사용해 2D-3D를 3D-3D로 lift
 - -높은 confidence의 3D-3D correspondence만 남긴 후 RANSAC-Kabsch 알고리즘 적용

$$\mathcal{L} = \sum_{j=1}^{N} \gamma^{j-N} (\mathcal{L}_{flow}^{j} + \alpha \mathcal{L}_{cert}^{j} + \beta \mathcal{L}_{pose}^{j})$$

- Training detail
 - Dataset
 - -3D model: ShapeNet, Google Scanned Objects
 - -Graphic tool: BlenderProc

응 Rendering, annotation 자동화 pipeline \rightarrow 2 million RGB-D images generated

< ShapeNet >

- BOP(Benchmark for 6D Object Pose Estimation) challenge
 - BOP 2023 new task: Unseen objects during training
 - 학습에 사용되지 않은 real world dataset으로 평가

- Evaluation metric
 - Average Recall, thresholding error from three error function
 - -Visible Surface Discrepancy (VSD)
 - 응보이는 부분에 대한 정렬 측정. Occlusion에 강건
 - -Maximum Symmetry-Aware Surface Distance (MSSD)
 - 응 3D 모델 표면 위의 점 사이 거리 측정. Object symmetry 고려
 - -Maximum Symmetry-Aware Projection Distance (MSPD)
 - 응2D image 평면에서 오차 계산
 - -여러 가지 threshold를 적용하여 true/false 구분 및 averaging
 - \pm Ex) object diameter $| 5\% \sim 50\%$

• Experiment result

	Method	Training	Average Recall (↑)							
	Wethod	Training	LM-O	T-LESS	TUD-L	IC-BIN	YCB-V	MEAN		
1	No shape-constraint + RANSAC-PnP [39]	\mathcal{L}_{flow}	61.7	77.6	72.4	54.2	65.7	66.3		
2	Shape-constraint	$\mathcal{L}_{flow}, \mathcal{L}_{pose}$	64.9	81.8	75.1	57.0	70.1	69.8		
3	Shape-constraint + Cascade	$\mathcal{L}_{flow}, \mathcal{L}_{pose}$	65.7	82.3	75.0	58.9	69.9	70.4		
4	Shape-constraint + Confidence factorization	$\mathcal{L}_{flow}, \mathcal{L}_{cert}, \mathcal{L}_{pose}$	64.5	81.8	75.3	57.3	70.5	69.9		
5	Shape-constraint + Confidence factorization + Cascade	$\mathcal{L}_{flow}, \mathcal{L}_{cert}, \mathcal{L}_{pose}$	65.9	82.0	76.1	59.5	69.8	70.7		

< Ablation >

	2D Localization		Pose Initialization		Pose Refinement		Average Recall (↑)								
F	GB-D Input	Method	Novel Objects	Method	Novel Objects	Method	Novel Objects	LM-O	T-LESS	TUD-L	IC-BIN	ITODD	HB	YCB-V	MEAN
1	×	Mask-RCNN [22, 38]	×	CosyPose [38]	×	CosyPose [38]	×	63.3	64.0	68.5	58.3	21.6	65.6	57.4	57.0
2	X	Mask-RCNN [22, 38]	×	SurfEmb [21]	×	BFGS	×	66.3	73.5	71.5	58.8	41.3	79.1	64.7	65.0
3	X	YOLOX [19, 44]	×	ZebraPose [56]	×	-	×	72.9	81.1	75.6	59.2	50.4	92.1	72.9	72.0
4	X	YOLOX [19, 44]	×	MegaPose [37]	1	MegaPose+MH [37]	\checkmark	64.8	78.1	74.1	56.9	42.2	86.3	70.2	67.5
5	X	YOLOX [19, 44]	×	Ours	1	Ours+MH	\checkmark	68.3	82.8	77.8	59.6	50.1	89.7	70.8	71.3
6	 Image: A start of the start of	YOLOX [19, 44]	×	WDR-Pose [30]	×	PFA [31]+Kabsch	×	79.2	84.9	96.3	70.6	52.6	86.7	89.9	80.0
7	1	YOLOX [19, 44]	×	MegaPose [37]	1	MegaPose+MH [37]+Teaserpp [67]	\checkmark	70.4	71.8	91.6	59.2	55.3	87.2	85.5	74.4
8	✓	YOLOX [19, 44]	×	Ours	\checkmark	Ours+MH+Kabsch	\checkmark	74.2	78.3	92.8	64.9	65.2	92.0	88.3	79.4
9	×	OSOP [54]	~	OSOP [54]	1	OSOP+PnP+MH [54]	~	31.2	-	-	-	-	49.2	33.2	-
10	X	CNOS-det. [50]	\checkmark	MegaPose [37]	1	MegaPose+MH [37]	\checkmark	56.0	50.8	68.7	41.9	34.6	70.6	62.0	54.9
11	×	CNOS-det. [50]	\checkmark	Ours	1	Ours+MH	~	57.5	53.0	69.1	45.6	40.8	74.5	63.9	57.8
12	\checkmark	OSOP [54]	\checkmark	OSOP [54]	1	OSOP+Kabsch+MH [54]+ICP	~	48.2	-	-	-	-	60.5	57.2	-
13	\checkmark	CNOS-seg. [50]	\checkmark	ZeroPose [5]	1	MegaPose+MH [37]	1	53.8	40.0	83.5	39.2	52.1	65.3	65.3	57.0
14	\checkmark	CNOS-det. [50]	\checkmark	MegaPose [37]	1	MegaPose+MH [37]+Teaserpp [67]	\checkmark	62.6	48.7	85.1	46.7	46.8	73.0	76.4	62.8
15	\checkmark	CNOS-det. [50]	\checkmark	Ours	\checkmark	Ours+Kabsch+MH	\checkmark	62.9	51.7	85.8	53.3	55.9	78.2	82.5	67.2

< BOP challenge >

• RefPose: Leveraging Reference Geometric Correspondences for Accurate 6D Pose Estimation of Unseen Objects (CVPR 2025)

- Unseen object에 대한 일반화 성능 향상
 - Query image로부터 바로 geometric correspondence를 추정
 - Shape prior에 대한 의존도가 높아 unseen object에 대한 일반화 성능이 떨어짐
 - Reference image를 같이 입력하는 방식의 네트워크 (Render-and-compare)
 - -Pre-rendered template에 대한 문제제기
 - -Template 자체의 성능 부족 가능성 및 3D shape 정보 활용의 부재

- Unseen object에 대한 일반화 성능 향상
 - Optical flow 활용: Coarse pose estimation 강화
 - Optical flow를 통해 pre-rendered template에 추가 processing을 가해 reference image 생성 응 Better initial pose에서부터 refinement 가능
 - -Reference image의 geometry(dense coordinate map)을 입력하여 guidance 강화
 - Geometry 기반 pose refinement

- Coarse pose estimation
 - Classifier를 사용해 template scoring → top k template 선정
 - Query image와의 flow를 계산하여 template의 dense coordinate map을 warping
 - -[2D coordinate, 3D coordinate] \rightarrow [warped 2D coordinate, 3D coordinate]
 - Pixel-wise voting을 통해 최종 geometry 선정 및 initial pose 추정

- Coarse pose estimation
 - Query와 template간 flow가 얼마나 정확하게 예측될 수 있는 가를 기준으로 평가
 - -Query와 가까운 pose를 가진 template 이라는 조건은 간접적으로 반영됨
 - Pred flow와 GT flow간 차이에 따라 positive, negative label 부여
 - -Predicted flow와 ground truth flow간의 오차를 supervision으로 활용

-BCE loss로 가벼운 CNN 구조의 classification head를 학습시킴

- Pose refinement
 - Initial pose에 해당하는 geometry로부터 query geometry estimation
 - -Dense coordinate map을 deep network에서 효과적으로 사용하기 위한 positional encoding
 - ╬ 3차원 좌표를 다양한 주파수의 sinusoid 에 통과시켜 더 고차원의 벡터로 encoding
 - Relative pose estimator를 통해 query geometry의 pose 추정

- Pose refinement
 - Correlation volume-guided attention
 - -Q: query image feature / K: reference image feature / V: G_r^{pos}
 - Up-sampling mask를 통해 geometry up-sampling하여 최종 geometry 예측

- Pose refinement
 - Loss design

• Experiment result

Method	Pafinament	VCR-V	Meen	Pun_time
Methou	Keimeineitt	100-1	Mean	Kun-ume
OSOP [41]	-	29.6	-	-
ZS6D [1]	-	32.4	-	-
MegaPose [15]	-	28.1	20.8	15.5s
GenFlow [28]	-	27.7	23.	3.8s
GigaPose [30]	-	27.8	26.8	0.4s
FoundPose [32]	-	<u>45.2</u>	<u>37.2</u>	<u>1.7s</u>
RefPose (Ours)	-	50.0	38.1	3.1s
MegaPose [15]	MegaPose	60.1	50.9	17.0s
MegaPose [15]	MegaPose, MH	62.1	54.7	21.9s
MegaPose [15]	RefPose (Ours)	65.3	57.2	16.4s
GenFlow [28]	GenFlow, MH	63.3	57.0	20.8s
GigaPose [30]	MegaPose	63.2	54.7	2.3s
GigaPose [30]	GenFlow, MH	65.2	<u>60.5</u>	10.6s
FoundPose [32]	MegaPose, MH + Featuremetric	<u>69.0</u>	59.6	20.5s
RefPose (Ours)	MegaPose	63.7	56.3	4.6s
RefPose (Ours)	RefPose (Ours)	72.7	61.4	<u>3.9s</u>

Ours

MegaPose

Conclusion

- GenFlow
 - Recurrent flow를 통한 점진적 정제
 - Key contribution
 - -GRU 기반 재귀적 구조
 - -Cascaded refinement
 - -GMM 기반 초기 자세 샘플링
- RefPose
 - Geometric correspondence를 직접 예측
 - Key contribution
 - -Optical flow 기반 template 선택
 - Iterative reference comparison
 - Correlation volume-guided attention

