Mamba Architectures for Video Frame Interpolation

2025년도 하계 세미나

Sogang University

Vision & Display Systems Lab, Dept. of Electronic Engineering

Outline

- VFIMamba: Video Frame Interpolation with State Space Models¹⁾
 - NeurIPS 2024
- LC-Mamba: Local and Continuous Mamba with Shifted Windows for Frame Interpolation²⁾
 - CVPR 2025

1)

- VFIMamba: Video Frame Interpolation with State Space Models¹⁾
 - NeurIPS 2024

Introduction

- Video Frame Interpolation (VFI) generates intermediate frames for slow-motion and high-refresh-rate displays
- CNN-based methods lack global context
 - attention models have quadratic complexity
- S6 (Mamba) Structured State Space Models offer global receptive fields with linear complexity
- VFIMamba's Mixed-SSM Block applies multi-directional S6 scanning on interleaved frame tokens
- Curriculum learning strategy boosts performance

- Frame Feature Extraction
 - Input frames are processed with lightweight convolutional layers to extract shallow features at reduced resolutions
- Frame Feature Extraction

 Conv Block

 H×W

 H/2×W/2

 H/4×W/4

 Repedding

 Reped

- Inter-Frame Modeling
 - Multi-scale inter-frame modeling is performed using the proposed Mixed-SSM Block (MSB) at each scale
- Frame Generation

• Extracted inter-frame features are used for motion estimation and intermediate frame

Mixed-SSM Block (MSB)

- Key module for inter-frame modeling based on the Selective State Space Model²⁾ (S6, a.k.a. Mamba)
- Two main differences from Transformer blocks
 - Replaces Attention with enhanced S6 block for global, linear-complexity modeling
 - Channel-Attention Block (CAB) replaces MLP, promoting inter-channel interaction and local awareness
- The S6 block enables data-dependent, global information propagation with linear complexity

Frame Rearrangement & Scan Directions

- Interleaved Rearrangement
 - Tokens from two input frames are interleaved to form a "super image" for better spatiotemporal locality
 - This arrangement is better than simple concatenation for preserving neighborhood information
- Multi-directional Scanning
 - The super image is scanned in four directions (horizontal, vertical, and their reverses) using the S6 block
 - Each direction is processed independently, and results are merged back

Curriculum Learning²⁾ Strategy

- Novel training scheme to fully unleash S6's potential for a wide range of motions
 - Start training on Vimeo 90K (small motions), then gradually introduce large motion data from X-TRAIN
 - Start with Vimeo 90K (small motions), then progressively introduce X-TRAIN samples
 - -Resizing X-TRAIN frames (originally 512×512) to S × S and center-cropping to 256×256 .
 - -Every 50 epochs, increase S by 10% (starting from 256) and double the temporal interval between selected frames (starting from 1) to steadily ramp up motion magnitude

Effect

- Maintains performance on small motion (low-res) while boosting high-motion (high-res) capabilities

Vimeo90K Dataset

X4K1000FPS dataset (X-TRAIN)

- Evaluation Datasets
 - Evaluated on diverse VFI benchmarks
 - -Low-resolution: Vimeo-90K, UCF101, SNU-FILM (easy/medium/hard/extreme)
 - -High-resolution: X-TEST, X-TEST-L, Xiph (all tested at 2K & 4K resolutions)

Vimeo90K

UCF101 SNU-FILM

分でした。 X4K1000FPS (X-TRAIN, X-TEST-L)

- Quantitative Results
 - State-of-the-art (SOTA) performance across most datasets and resolutions
 - Significant improvement in high-resolution and large-motion scenarios (e.g., X-TEST 2K/4K)
 - Comparable or better FLOPs and runtime versus existing efficient models

	Training Dataset	Vimeo-90K (Xue et al., 2019)	UCF101 (Soomro et al., 2012)	easy	SNU-FILM (Commedium	hoi et al., 2020) hard	extreme	Average	FLOPs (T)	Runtime (ms)
DAIN★ (Bao et al., 2019)	V	34.71/0.9756	34.99/0.9683	39.73/0.9902	35.46/0.9780	30.17/0.9335	25.09/0.8584	33.36/0.9507	5.51	897.8
AdaCof★ (Lee et al., 2020)	V	34.47/0.9730	34.90/0.9680	39.80/0.9900	35.05/0.9754	29.46/0.9244	24.31/0.8439	33.00/0.9458	0.36	85.1
CAIN★ (Choi et al., 2020)	V	34.65/0.9730	34.91/0.9690	39.89/0.9900	35.61/0.9776	29.90/0.9292	24.78/0.8507	33.29/0.9483	1.29	102.4
Softsplat (Niklaus & Liu, 2020)	V	36.13/0.9805	35.39/0.9697	40.26/0.9911	36.07/0.9798	30.53/0.9365	25.16/0.8604	33.92/0.9530	0.94	266.4
XVFI (Sim et al., 2021)	V	35.09/0.9759	35.17/0.9685	39.93/0.9907	35.37/0.9782	29.58/0.9276	24.17/0.8450	33.22/0.9477	0.37	165.2
M2M-VFI (Hu et al., 2022)	V	35.47/0.9778	35.28/0.9694	39.66/0.9904	35.74/0.9794	30.30/0.9360	25.08/0.8604	33.59/0.9522	0.26	60.9
RIFE (Huang et al., 2022)	V	35.61/0.9779	35.28/0.9690	39.80/0.9903	35.76/0.9787	30.36/0.9351	25.27/0.8601	33.68/0.9519	0.20	35.2
IFRNet-L (Kong et al., 2022)	V	36.20/0.9808	35.42/0.9698	40.10/0.9906	36.12/0.9797	30.63/0.9368	25.26/0.8609	33.96/0.9531	0.79	115.3
EMA-VFI-S (Zhang et al., 2023)	V	36.07/0.9797	35.34/0.9696	39.81/0.9906	35.88/0.9795	30.69/0.9375	25.47/0.8632	33.88/0.9534	0.20	76.4
EMA-VFI (Zhang et al., 2023)	V	36.64/0.9819	35.48 /0.9701	39.98/0.9910	36.09/0.9801	30.94/0.9392	25.69/0.8661	34.14/0.9547	0.91	239.6
AMT-L (Li et al., 2023)	V	36.35/0.9815	35.39/0.9698	39.95/ 0.9913	36.09/ <mark>0.9805</mark>	30.75/0.9384	25.41/0.8638	33.99/0.9542	0.58	183.42
AMT-G (Li et al., 2023)	V	36.53/0.9817	35.41/0.9699	39.88/0.9913	36.12/ 0.9805	30.78/0.9385	25.43/0.8644	34.03/0.9544	2.07	403.7
SGM-VFI (Liu et al., 2024a)	V+X	35.81/0.9793	35.34/0.9693	40.14/0.9907	36.06/0.9795	30.81/0.9375	25.59/0.8646	33.96/0.9535	1.78	942.9
VFIMamba-S	V+X	36.09/0.9800	35.36/0.9696	40.21/0.9909	36.17/0.9800	30.80/0.9381	25.59/0.8655	34.04/0.9540	0.24	128.0
VFIMamba	V+X	36.64/0.9819	35.45/ 0.9702	40.51 / <u>0.9912</u>	36.40/0.9805	30.99/0.9401	25.79/0.8682	34.30/0.9554	0.94	310.9

	Training			X-TEST-L (Liu et al., 2024a)		Xiph (Montgomery, 1994)		Average
	Dataset	2K	4K	2K	4K	2K	4K	Trenage
XVFI (Sim et al., 2021)	X	31.15/0.9144	30.12/0.9045	29.82/0.8951	29.02/0.8866	34.76/0.9258	32.84/0.8810	31.29/0.9012
M2M-VFI (Hu et al., 2022)	V	32.13/0.9258	30.89/0.9138	30.90/0.9092	29.73/0.9001	36.44/0.9427	33.92/0.8992	32.34/0.9151
RIFE (Huang et al., 2022)	V	31.10/0.8972	30.13/0.8927	29.87/0.8805	28.98/0.8756	36.19/0.9380	33.76/0.8940	31.67/0.8963
FILM (Reda et al., 2022)	V	31.61/0.9174	OOM	30.18/0.8960	OOM	36.32/0.9343	33.27/0.8760	/
IFRNet-L (Kong et al., 2022)	V	31.78/0.9147	30.66/0.9050	30.76/0.8963	29.74/0.8884	36.21/0.9374	34.25/0.8946	32.23/0.9061
FLDR (Nottebaum et al., 2022)	X	31.12/0.9092	30.46/0.9041	29.90/0.8906	29.30/0.8879	34.80/0.9280	33.00/0.8862	31.43/0.9010
BiFormer (Park et al., 2023)	V+X	31.32/0.9200	31.32/0.9215	30.36/0.9068	30.14/0.9069	34.20/0.9246	33.49/0.8953	31.81/0.9125
EMA-VFI-S (Zhang et al., 2023)	V	30.91/0.9000	29.91/0.8951	29.51/0.8775	28.60/0.8733	36.55/0.9421	34.25/0.9020	31.62/0.8983
AMT-L (Li et al., 2023)	V	32.08/0.9277	30.96/0.9147	31.09/0.9103	30.12/0.9019	36.27/0.9402	34.49/0.9030	32.50/0.9163
AMT-G (Li et al., 2023)	V	32.35/0.9300	31.12/0.9157	31.35/0.9125	30.33/0.9036	36.38/0.9410	34.63 /0.9039	32.69/0.9178
SGM-VFI (Liu et al., 2024a)	V+X	32.38/0.9272	31.35/0.9179	30.99/0.9072	29.91/0.8972	36.57/0.9424	34.23/0.9021	32.57/0.9157
VFIMamba-S	V+X	32.84/0.9328	31.73/0.9238	31.58/0.9169	30.50/0.9077	36.72/0.9428	34.32/0.9034	32.95/0.9212
VFIMamba	V+X	33.34/0.9361	32.15/0.9246	32.22/0.9259	31.05/0.9159	37.13 /0.9451	34.62/ 0.9059	33.42/0.9256

Quantitative comparison with SOTA methods on the low(top)/high(bottom)-resolution datasets, in terms of PSNR/SSIM

- Qualitative Results
 - Sharper details and better motion estimation than previous SOTA methods, especially for large and complex motions
 - Clear preservation of object boundaries and textures

Visualizations from SNU-FILM and X-TEST

- Ablation Studies
 - S6 Block Effectiveness
 - -Removing S6 or replacing with convolution/attention leads to noticeable performance drops
 - -S6 achieves a strong balance of speed and accuracy
 - Frame Rearrangement

-Interleaved rearrangement consistently outperforms sequential rearrangement for VFI

Model	Vimeo90K	X-TEST		SNU-	FILM	Params (M)	720p Inference	
	viiiieo y o i i	2K	4K	hard	extreme	Turum (111)	Time (ms)	
w/o S6	35.62/0.9771	28.94/0.8517	27.12/0.8436	30.41/0.9341	25.14/0.8567	16.1	51	
Convolution	35.86/0.9790	31.58/0.9167	30.24/0.9044	30.61/0.9365	25.49/0.8631	23.4	55	
Local Attention	35.92/0.9790	30.49/0.8917	30.00/0.8845	30.47/0.9338	25.46/0.8625	15.6	59	
Full Attention	36.04/0.9798	OOM	OOM	30.55/0.9367	25.35/0.8602	15.6	336	
S6	36.12/0.9802	32.84/0.9328	31.73/0.9238	30.80/0.9381	25.59/0.8655	16.8	77	

Horizontal Scan	Vertical Scan	Vimeo-90K	X-T	EST	SNU-FILM		
Horizontai Scan	vertical Scali	viilleo york	2K	4K	hard	extreme	
Sequential	Sequential	35.55/0.9765	28.07/0.8327	26.75/0.8327	30.24/0.9319	25.03/0.8545	
Sequential	Interleaved	35.76/0.9784	31.69/0.9226	30.45/0.9078	30.32/0.9342	25.21/0.8611	
Interleaved	Sequential	35.79/0.9785	31.49/0.9221	30.35/0.9053	30.12/0.9331	25.11/0.8602	
Interleaved	Interleaved	36.12/0.9802	32.84/0.9328	31.73/0.9238	30.80/0.9381	25.59/0.8655	

Ablation on different models for inter-frame modeling(top) and different rearrangement methods(bottom)

- Ablation Studies
 - Learning Strategies
 - -Curriculum learning delivers the best generalization on both small- and large-motion datasets
 - -Mixed or sequential training is less effective

Performance of different learning methods, recorded every 30 epochs

	Curriculum	Vimeo90K	X-T	SNU-FILM		
	Learning			4K	hard	extreme
RIFE	X	35.61/0.9797	31.10/0.8972	30.13/0.8927	30.36/0.9375	25.27/0.8601
Kii L	✓	35.60/0.9797	31.40/0.9142	30.23/0.9011	30.47/0.9376	25.38/0.8619
EMA-VFI-S	Х	36.07/0.9797	30.91/0.9000	29.91/0.8951	30.69/0.9375	25.47/0.8632
EWIA-VITI-S	✓	36.05/0.9797	31.15/0.9083	29.98/0.8988	30.73/0.9379	25.53/0.8652
VFIMamba-S	Х	36.13/0.9802	30.82/0.8997	29.87/0.8949	30.58/0.9378	25.30/0.8620
v Filviamba-S	✓	36.12/ 0.9802	32.84/0.9328	31.73/0.9238	30.80/0.9381	25.59/0.8655

Performance of different methods without or with curriculum learning

(I

- LC-Mamba: Local and Continuous Mamba with Shifted Windows for Frame Interpolation¹⁾
 - CVPR 2025

Introduction

- Key Ideas of LC-Mamba
 - Introduces Shifted-Window Hilbert-Scan (SW-H-SS2D) to maintain local continuity within each window
 - Proposes Interleaved 3D Scan (H-SS3D) for joint spatiotemporal feature fusion
- Core Contributions
 - Hybrid local-global feature extraction block combining SW-H-SS2D with lightweight attention
 - Superior quantitative gains (+0.03 dB PSNR on Vimeo-90K) and qualitative improvements over previous Mamba variants

Overall Architecture

- Low-Level Feature Extractor (LFE)
 - Pyramid of CNNs produces multi-scale features
- Spatiotemporal Feature Extractor (STFE)
 - Repeated LC-Mamba blocks
- Motion Estimator (ME)
 - Predicts dense flow and blending masks from fused features
- Reconstruction & Refinement (RR)
 - Warps input frames and blends using estimated masks
 - Final convolution for artifact removal

Low-Level Feature Extractor (LFE)

- LFE processes each input frame I_i to produce low-level feature maps $\{L_i^0, L_i^1, L_i^2\}$ at three pyramid levels
- At pyramid level l, feature L_i^l has spatial dimensions $\frac{H}{2^l} \times \frac{W}{2^l}$ and channel depth $2^l C$, halving resolution and doubling channels with each level
- Downstream Integration
 - The top-level features L_0^2 and L_1^2 from both frames are concatenated and passed to the Spatiotemporal Feature Extractor (STFE) for motion and context modeling

Spatiotemporal Feature Extractor (STFE)

- Input & Output
 - Takes the concatenated top-level LFE features $[L_0^2, L_1^2]$ and produces two levels of spatiotemporal motion features V^3 and V^4
- Module Composition
 - Built as a stack of hierarchical LC-Mamba blocks
- Downstream Role
 - Supplies V^3 and V^4 to the Motion Estimator (ME), which predicts bidirectional flows and blending masks for frame interpolation

Motion Estimator (ME)

- Purpose & Inputs
 - Receives spatiotemporal features V^3 and V^4 from STFE
 - Aims to predict the coarse intermediate frame and the parameters for refinement
- Flow & Mask Estimation
 - Predicts bidirectional optical flows $F_{t\to 0}$, $F_{t\to 1}$ and a blending mask M
- Frame Synthesis
 - Applies backward warping and blends the two warped frames
- Output
 - Produces the preliminary interpolated frame \widetilde{I}_t , which is then passed to the Residual Refiner for final correction

$$-\widetilde{I_t} = M \odot W_0 + (1 - M) \odot W_1$$

Spatiotemporal Feature Extractor V^3 V^4

Mamba

Block

 $|\times N_1|$

LC-

Mamba

Block

Motion Estimator

Residual Refiner

 $\uparrow I_0 I_1$

Residual Refiner (RR)

- Purpose
 - Refines the coarse interpolated frame by predicting and adding a residual image
- Inputs
 - Coarse frame \tilde{I}_t from the ME module
 - Original frames I_0 , I_1
 - Low-level features L_i^l from LFE

- Residual Prediction
 - A lightweight convolutional network processes $\{I, L, F, M\}$ to estimate a per-pixel residual R
- Final Output
 - Adds the predicted residual to the coarse frame

$$-I_t = \widetilde{I_t} + R$$

Motion Estimator

LC-Mamba Block (H-SS2D: Hilbert Curve)

- Hilbert curve-based scanning
 - Converts 2D spatial data to 1D sequences while preserving local adjacency
- Four-path Hilbert structure
 - Uses multiple scanning directions to improve information propagation
- Window-based scanning
 - Limits the receptive field to local regions to reduce historical decay, especially effective for high-resolution input with dense motion.
- Shifted windows
 - Introduces cross-window interactions by alternating window partitions.

Two successive LC-Mamba block Hilbert Curve based Scan

x4 scan paths

Shifted window based H-SS2D

LC-Mamba Block (H-SS3D)

• Interweaves tokens from two frames into a single 3D Hilbert curve—based sequence, preserving both spatial and temporal locality

- Workflow
 - Extract feature maps V_0 , V_1 from frame 0 and 1
 - Apply H-SS2D in four Hilbert directions to each map
 - Interleave corresponding token sequences (e.g. V_h , V_v)
 - Perform windowed selective scans on interleaved sequences
 - Deinterleave and merge scanned outputs into spatiotemporal features
- Key Benefits
 - Captures fine-grained local details and long-range patterns across both space and time
 - Achieves linear complexity while modeling complex motions in high-resolution videos

Revert and

Deinterleaving

Selective Scan

Rearrange and

Interleaving

- Datasets
 - Vimeo 90K: 3,782 frame triplets at 448×256 resolution
 - UCF101: 379 triplets at 256 × 256
 - Middlebury: OTHER set at \sim 640 × 480
 - SNU-FILM: 1,240 triplets at 1280 × 720, split by motion difficulty
 - Xiph: tested on downsampled 2K and centrally-cropped 4K versions

• Quantitative Evaluation

Method	Vimeo90K	UCF101	Xi	ph	- M.B.	SNU-FILM				Danama (M)
Method	Vimeo90K	UCFIUI	2K	4K	- M.B.	Easy	Medium	Hard	Extreme	Params (M)
ToFlow [1]	33.73/0.9682	34.58/0.9667	33.93/0.922	30.74/0.856	2.15	39.08/0.9890	34.39/0.9740	28.44/0.9180	23.39/0.8310	1.4
IFRNet [15]	35.80/0.9794	35.29/0.9693	36.00/0.936	33.99/0.893	1.95	40.03 /0.9905	35.94 /0.9793	30.41/0.9358	25.05/0.8587	5
M2M [11]	35.47/0.9778	35.28/0.9694	36.44/0.943	33.92/0.899	2.09	39.66/0.9904	35.74/0.9794	30.30/0.9360	25.08/0.8604	7.6
SoftSplat [30]	36.10/0.9802	35.39/0.9697	36.62/ 0.944	33.60/0.901	1.81	39.88/0.9897	35.68/0.9772	30.19/0.9312	24.83/0.8500	7.7
RIFE [14]	35.61/0.9779	35.28/0.9690	36.19/0.938	33.76/0.894	1.96	39.80/0.9903	35.76/0.9787	30.36/0.9351	25.27/0.8601	9.8
BMBC [31]	35.01/0.9764	35.15/0.9689	32.82/0.928	31.19/0.880	2.04	39.90/0.9902	35.31/0.9774	29.33/0.9270	23.92/0.8432	11.1
Ours-E	36.19/0.9803	35.33/0.9695	36.67 / <u>0.943</u>	34.26/0.903	1.98	39.82/ 0.9907	35.87/ 0.9797	30.54/0.9373	25.33/0.8626	6.7
EMA-S [46]	36.07/0.9794†	35.34/0.9696†	36.54/0.942†	34.24/0.902†	1.94†	39.81/0.9903†	35.88/0.9792†	30.68/0.9371†	25.47/0.8627†	14.5
VFIMamba-S [47]	36.09/0.9800†	35.35/0.9696†	36.71/0.942†	34.26 /0.902†	1.97†	40.21/0.9912†	36.17/0.9802†	30.80/0.9382†	25.59/0.8655†	16.8
VFIFormer-S [26]	36.37/0.9810†	35.36/ 0.9698 †	36.55/0.943†	33.37/0.899†	1.89†	40.02/0.9906†	35.91/0.9793†	30.22/0.9348†	24.80/0.8568†	17.1
ABME [32]	36.18/0.9805	35.38/ 0.9698	36.53/0.944	33.73/0.901	2.01	39.59/0.9901	35.77/0.9789	30.58/0.9364	25.42/0.8639	18.1
Ours-B	36.43/0.9813	35.39/0.9698	36.90/0.945	34.26/0.904	1.89	40.07/0.9909	36.08/0.9801	30.59/0.9375	25.35/0.8630	16.2
SGM-VFI-S-1/2 [19]	35.81/0.9785†	35.33/0.9692†	36.06/0.940†	33.26/0.897†	1.87†	40.36 /0.9900†	36.12/0.9787†	30.62/0.9351†	25.38/0.8615†	20.8
SepConv [5]	33.79/0.9702	34.78/0.9669	34.77/0.929	32.06/0.880	2.27	39.41/0.9900	34.97/0.9762	29.36/0.9253	24.31/0.8448	21.7
AdaCoF [16]	34.47/0.9730	34.90/0.9680	34.86/0.928	31.68/0.870	2.24	39.80/0.9900	35.05/0.9754	29.46/0.9244	24.31/0.8439	21.8
DAIN [2]	34.71/0.9756	34.99/0.9683	35.95/0.940	33.49/0.895	2.04	39.73/0.9902	35.46/0.9780	30.17/0.9335	25.09/0.8584	24.0
VFIFormer [26]	36.50/0.9815†	35.42/0.9699†	OOM†	OOM†	1.82	40.12/0.9907	36.09/0.9798†	30.67/0.9378†	25.43/0.8643†	24.1
Ours-P	36.53/0.9816	35.42/0.9699	36.99/0.946	34.49/0.906	1.92	40.16/ 0.9909	36.17/0.9802	30.72/0.9382	25.48/0.8645	25.4
CAIN [6]	34.65/0.9730	34.91/0.9690	35.21/0.937	32.56/0.901	2.28	39.89/0.9900	35.61/0.9776	29.90/0.9292	24.78/0.8507	42.8
EMA [46]	36.50/0.9814†	35.38/0.9697†	36.74/0.944†	34.54 / <u>0.905</u> †	1.84 [†]	39.57/ <u>0.9905</u> †	35.85/ <u>0.9797</u> †	30.80/ 0.9389 †	25.59/0.8650†	65.6
VFIMamba [47]	36.45/0.9807†	35.37/ 0.9699 †	37.02 /0.944†	34.39/0.904†	1.89†	40.41 /0.9903†	36.30 /0.9794†	30.89 /0.9387†	25.68/0.8661†	66.1
Ours-P	36.53/0.9816	35.42/0.9699	36.99/ 0.946	34.49/ 0.906	1.92	<u>40.16</u> / 0.9909	36.17/ 0.9802	30.72/0.9382	25.48/0.8645	25.4

• Qualitative Evaluation

• Ablation Study

Scanning	Vimeo90K	Xiph-2K	Xiph-4K	SNU-FILM(avg.)
Bidirection w/ ILV	35.41/0.9799	36.00/0.9381	33.13/0.8937	32.32/0.9405
Cross w/ ILV	36.07/0.9799	35.73/0.9362	33.80/0.8947	32.53/0.9413
Continuous w/ ILV	36.09/0.9800	36.57/0.9428	33.99/0.9010	24.59/0.8335
Local w/ ILV	36.11/0.9801	36.38/0.9415	34.01/0.9008	<u>32.62</u> /0.9411
Z-order w/ ILV	36.13/0.9800	35.91/0.9371	33.30/0.8932	32.36/0.9417
SW-H-SS3D	36.19/0.9803	36.67/0.9437	34.26/0.9036	$32.89/\overline{0.9426}$

Performance comparison of different scanning methods

Settings	Vimeo90K	Xiph-2K	Xiph-4K	SNU-FILM(avg.)
8 w/ shift	36.43/ 0.9813	36.90 /0.9452	34.26 /0.9046	33.02/ 0.9429
8 w/o shift	36.45/ 0.9813	36.78/0.9448	34.15/0.9042	32.95/0.9428
16 w/ shift	36.44/ 0.9813	36.88/ 0.9454	34.15/ 0.9047	33.02/ 0.9429
16 w/o shift	36.46/0.9813	<u>36.88</u> /0.9449	<u>34.23</u> /0.9045	33.05/0.9429

Ablation studies for window settings

$\overline{N_1 / N_2 / C}$	Vimeo90K	Xiph-2K	Xiph-4K	SNU-FILM(avg.)
4/4/16	36.19/0.9803	36.67/0.9437	34.26/0.9036	32.89/ 0.9426
2/2/32	36.43/0.9813	36.90/0.9452	34.26/0.9046	33.02/0.9429
4/4/32	36.53/0.9816	36.99/0.9459	34.49/0.9061	33.13/0.9435

Ablation study on the scalable capability of LC-Mamba blocks

