2025 하계 세미나

3D Foundation Models and Their Applications

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

 Presented By

 120240320 석사과정 신은호

Contents

- 논문 선정 이유
- Vggt: Visual geometry grounded transformer [CVPR 2025 Best Paper Award]
- MASt3R-SLAM: Real-time dense SLAM with 3D reconstruction priors [CVPR 2025]

논문 선정 이유

- 3D Foundation Models
 - 3D Scene understanding
 - 촬영을 통해 취득된 2D 이미지로부터 공간 이해에 대한 지속적 수요

Sigimage matching, Depth estimation, SLAM...

- 다양한 rule-based algorithm 통한 동작 수행 방식 존재

SIFT, SURF, FAST, Epipolar Geometry...

-2D image 기반 3D 공간 예측 방식 (2D matching → 3D point cloud)

Structure from Motion 방식 알고리즘 이용 (e.g. COLMAP, Reality Capture)

 \oplus Feature Description \rightarrow Epipolar Geometry \rightarrow Triangulation \rightarrow Bundle Adjustment

• DUSt3R, MASt3R, VGGT... 3D Foundation model 방식 등장

-MASt3R : 3D-2D matching algorithm

:: Image Matching 3D point cloud \rightarrow 2D matching의 downstream으로 해결

- -VGGT : Visual Geometry Grounded Transformer
 - 응 Camera pose estimation, Depth Estimation, Tracking을 feed forward 방식으로 수행

- Vggt: Visual geometry grounded transformer [CVPR 2025 Best Paper Award]
 - 1. Visual Geometry Group, University of Oxford
 - 2. Meta AI

- Introduction
 - Scene의 key 3D attributes를 직접 추론하는 feed forward neural network
 - -Camera parameters, point maps, depth maps, 3D point tracks
 - 기존 3D computer vision 연구가 단일 작업에 국한 혹은 특정 작업에 특화
 - -3D 재구성 기법의 경우 기본적으로 Bundle Adjustment와 같은 반복 최적화 기법 사용
 - 단안 깊이 추정 등 geometric 정보로 해결 불가한 작업 수행 ML(e.g. Depth Anything)
 - -순수 신경망을 통해 3D 작업을 직접 해결 할 수 있는가
 - -VGGT의 경우 simple and efficient image reconstruction

- Introduction
 - 최근 연구 DUSt3R, MASt3R의 경우 FFN 기반 3D Reconstruction 수행
 - -2장의 pair 이미지에 대해 처리 가능
 - VGGT의 경우 one, a few, hundreds of input view에 대해 처리 가능
 - 추가 postprocessing 없이도 기존 방법 대비 뛰어난 성능
 - 후처리가 필수인 DUSt3R, MASt3R, VGGSfM과 본질적으로 다른 접근
 - 3D 재구성을 위해 특수한 구조의 네트워크 설계 아닌 fairly standard large transformer ☆ 특수한 3D inductive bias 없이 구성
 - -GPT, CLIP, DINO, Stable Diffusion과 유사하게 다양한 작업에 파인튜닝이 가능

응 VGGT 추출 특징은 point tracking in dynamic videos, novel view synthesis에 높은 성능

• Method

Problem definition and notation

$$f\left((I_i)_{i=1}^N\right) = \left(\mathbf{g}_i, D_i, P_i, T_i\right)_{i=1}^N$$

፨동일 장면을 관찰하고 있는 N장의 이미지 Ⅰ

- : Camera parameter g (intrinsic and extrinsic \mathbb{R}^9)
- : Depth map $D \in \mathbb{R}^{H \times W}$, point map $P \in \mathbb{R}^{3 \times H \times W}$, grid $T \in \mathbb{R}^{C \times H \times W}$ for point tracking

 \checkmark g=[q,t,f], rotation quaternion q, translation vector t, FoV f

✓Depth D ∈ \mathbb{R}^+ , point map P는 viewpoint invariant하므로 g_1 에서 정의

✓Keypoint tracking의 경우 Track-Anypoint 방식

- the network output track $\mathcal{T}^*(y_q) = (y_i)_{i=1}^N$
- $\mathcal{T}((y_j)_{j=1}^M, (T_i)_{i=1}^M) = ((y_{i,j})_{i=1}^N)_{j=1}^M$, feature map T

Street: Over-complete Predictions

✓VGGT가 예측하는 각 값들이 서로 독립적이지 않음
 ✓서로 간 closed-form 관계로 연결되나, 이를 명시적으로 모두 예측
 ✓결과적으로 성능이 크게 향상됨을 확인

- Method
 - Feature Backbone
 - -Following recent works in 3D deep learning, 최소한의 3D inductive bias 유지 설계 응모델을 대형 transformer로 구현
 - 각 입력 이미지 I는 DINO를 통해 patchify 후 K개의 토큰 $t \in \mathbb{R}^{K \times C}$
 - -모든 프레임의 이미지 토큰을 결합한 후 frame-wise & global self-attention 교대 적용

응Alternating-Attention(AA) 기법도입

✓ Frame 단위 self-attention : 프레임 내 토큰들 t_k^I 에 attend

✓Global self-attention : 모든 프레임의 토큰들 고려 t^{I} , 전역 정보 결합

• Cross-attention 층 없이 self-attention만으로 구성

- Method
 - Prediction heads
 - 각 *I_i*에 대해 image token *t^l_i* camera token *t^g_i* ∈ ℝ^{1×C}, register token *t^R_i* ∈ ℝ^{4×C} 결합
 ☆ Register token reference 'Vision transformers need registers'[ICLR 2024]
 (*t^l_i*, *t^R_i*)^N_{i=1} 은 AA transformer 구조에 입력되어 (*t^l_i*, *t^g_i*, *t^R_i*)^N_{i=1} 출력
 ☆ First frame에 대해 camera token과 register token은 different set of learnable token
 ✓ 모든 3D 예측을 첫번째 카메라 좌표계에서 정의할 수 있도록 수행
 ☆ Transformer 는 frame별 self-attention을 포함하기 때문에 frame 특화 출력 token
 ☆ 최종 출력 시 register token은 버려지며 image & camera token이 예측에 사용

- Method
 - Prediction head
 - -Camera Prediction

응 4개의 self-attention 층과 linear layer 를 통과시켜 예측

-Dense Prediction

Simage token은 DPT 계층을 거쳐 고해상도 feature map $F_i \in \mathbb{R}^{C \times H \times W}$ 로 변환

☆F는 3x3 convolution layer를 통해 Depth map & Point map으로 mapping

✓Aleatoric Uncertainty를 예측하며 모델의 confidence를 나타내고 손실함수에 사용

-Tracking

;; CoTracker2[ECCV 2024] architecture 사용

✓입력 프레임 간의 시간적 순서 가정하지 않으므로, 단순 이미지 집합 사용 가능

- Training
 - Training Loss
 - $$\begin{split} -L &= L_{camera} + L_{depth} + L_{pmap} + \lambda L_{track} \\ \text{Huber Loss} &= \sum_{n=1}^{N} l_n, \\ \text{-Camera loss} \\ & \Leftrightarrow \text{Huber loss } L_{camera} = \sum_{i=1}^{N} || \hat{g}_i g_i ||_{\epsilon} \quad \text{where } l_n = \begin{cases} \frac{1}{2} (x_n y_n)^2, & \text{if } |x_n y_n| < \delta \\ \delta (|x_n y_n| \frac{1}{2} \delta), & \text{otherwise} \end{cases} \\ & \Leftrightarrow \text{Old Price Pr$$
 - -Depth loss
 - 응 DUSt3R을 따르며, aleatoric-uncertainty loss와 mono depth에서 사용되는 gradient 항 응 $L_{depth} = \sum_{i=1}^{N} \|\Sigma_i^D \odot (\hat{D}_i - D_i)\| + \|\Sigma_i^D \odot (\nabla \hat{D}_i - \nabla D_i)\| - \alpha \log \Sigma_i^D$
 - -Point map loss
 - Depth loss와 동일하게 정의
 - Tracking loss

$$\sum_{j=1}^{M} \sum_{i=1}^{N} \|y_{j,i} - \hat{y}_{j,i}\|$$

 $(CoTracker2와 동일하게 point의 해당 프레임 관측 여부 위한 visibility loss 동시 사용
(CoTracker2와 동일하게 point의 해당 프레임 관측 여부 위한 visibility loss 동시 사용$

• Training

Ground Truth Coordinate Normalization

- Scene의 scale이나 global reference frame이 바뀌어도 이미지 자체는 영향을 받지 않음

✓불확정성(ambiguous reconstruction) 제거 필요

✓Canonical frame 정의 후, 해당 정규화를 학습하도록 유도

-DUSt3R 을 따라

응모든 데이터를 첫번째 카메라 좌표계로 변환

응 Point map상의 모든 3D 점들의 원점으로부터의 평균 유클리드 거리 계산

응 Camera translation, point map, depth map 정규화

응 단, 모델의 출력물은 별도로 normalization 하지 않음

- Training
 - Implementation Details
 - -1.2 B parameter (1.2B x 4 byte = 약 4.8GB)
 - -AdamW optimizer 사용, 160,000 iteration 수행, cosine learning rate scheduler 사용
 - -Color jittering, Gaussian blur, grayscale augmentation 수행
 - -64개 A100 GPU 9일간 수행
 - -(그 외 생략)
 - Training Data
 - -Co3Dv2,BlendMVS, DL3DV, MegaDepth,Kubric, WildRGB, ScanNet, HyperSim, Mapillary, Habitat, Replica, MVS-Synth, PointOdyssey, Virtual KITTI,Aria Synthetic Environments, Aria Digital Twin, Objaverse 등 artist-created asset
 - -Indoor and outdoor 환경과 synthetic and real-world scenario로 다양하게 구성
 - -3D 주석 정보는 센서기반 측정, 합성 엔진, SfM 기법을 통해 획득
 - 전체 구성의 경우 MASt3R의 학습 데이터 규모 및 다양성과 유사

• Experiments

- Camera Pose Estimation
 - -CO3Dv2, RealEstate 10K dataset 수행
 - ╬ Fast3R과 유사한 속도를 가지며 뚜렷한 성능 향상
 - 응 Re10K의 경우 학습되지 않은 dataset으로 generalization 입증

#BA를 결합할 경우 추가적인 성능 향상 가능

Methods	Re10K (unseen) AUC@30↑	CO3Dv2 AUC@30↑	Time
Colmap+SPSG [92]	45.2	25.3	~ 15s
PixSfM [66]	49.4	30.1	> 20s
PoseDiff [124]	48.0	66.5	$\sim 7s$
DUSt3R [129]	67.7	76.7	$\sim 7s$
MASt3R [62]	76.4	81.8	$\sim 9s$
VGGSfM v2 [125]	78.9	83.4	$\sim 10s$
MV-DUSt3R [111] [‡]	71.3	69.5	~ 0.6s
CUT3R [127] [‡]	75.3	82.8	$\sim 0.6s$
FLARE [156] [‡]	78.8	83.3	$\sim 0.5s$
Fast3R [141] [‡]	72.7	82.5	$\sim 0.2 \mathrm{s}$
Ours (Feed-Forward)	<u>85.3</u>	88.2	$\sim 0.2s$
Ours (with BA)	93.5	91.8	$\sim 1.8s$

- Experiments
 - Multi-view Depth Estimation
 - -DTU dataset에서 Accuracy(Euclidean), Completeness, Overall(Chamfer distance)
 - -카메라 GT 정보를 사용하지 않고 작동하는 DUSt3R, VGGT
 - Point Map Estimation
 - -DUSt3R와 MASt3R는 각각 장면당 약 10초가 소요되는 고비용 최적화 수행
 - 직접 예측된 포인트 맵보다, 예측된 depth map과 camera parameter로부터 3D unprojection을 통해 얻은 포인트들이 더 정확하다는 것도 관찰
 - -유화 그림(oil painting), 겹치지 않는 프레임(non-overlapping), 반복적이거나 균질한 질감(예: 사막) 등 어려운 out-of-domain 예제에서도 잘 작동

Known GT camera	Method	Acc.↓	Comp.↓	Overall↓
1	Gipuma [40]	0.283	0.873	0.578
1	MVSNet [144]	0.396	0.527	0.462
1	CIDER [139]	0.417	0.437	0.427
1	PatchmatchNet [121]	0.427	0.377	0.417
1	MASt3R [62]	0.403	0.344	0.374
1	GeoMVSNet [157]	0.331	0.259	0.295
×	DUSt3R [129]	2.677	0.805	1.741
×	Ours	0.389	0.374	0.382
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	MVSNet [144] CIDER [139] PatchmatchNet [121] MASt3R [62] GeoMVSNet [157] DUSt3R [129] Ours	0.396 0.417 0.427 0.403 0.331 2.677 0.389	0.527 0.437 0.377 0.344 0.259 0.805 0.374	0.462 0.427 0.417 0.374 0.295 1.741 0.382

Table 2. Dense MVS Estimation on the DTU [51] Dataset.

Methods	Acc.↓	Comp.↓	Overall↓	Time
DUSt3R	1.167	0.842	1.005	$\sim 7s$
MASt3R	0.968	0.684	0.826	$\sim 9s$
Ours (Point)	<u>0.901</u>	0.518	0.709	$\sim 0.2s$
Ours (Depth + Cam)	0.873	0.482	0.677	$\sim 0.2s$

Table 3. Point Map Estimation on ETH3D

• Experiments

- Ablation studies
 - -Alternating-Attention 설계 유효성 검증
 - Point map 추정 정확도는 장면의 기하 구조와 카메라 파라미터에 대한 모델의
 통합적인 이해를 반영하므로, 구성 요소 분석의 평가 지표로 선택

ETH3D Dataset	Acc.↓	Comp.↓	Overall↓
Cross-Attention	1.287	0.835	1.061
Global Self-Attention Only	<u>1.032</u>	<u>0.621</u>	<u>0.827</u>
Alternating-Attention	0.901	0.518	0.709

-Multi-task Learning

☆하나의 네트워크가 여러 3D 요소들을 동시에 학습하는 것이 유리한지를 검증

✓depth map과 camera parameter로 point map을 계산 가능

w. \mathcal{L}_{camera}	w. \mathcal{L}_{depth}	w. \mathcal{L}_{track}	Acc.↓	Comp.↓	Overall↓
×	1	1	1.042	0.627	0.834
1	×	1	<u>0.920</u>	0.534	0.727
1	1	×	0.976	0.603	0.790
1	✓	✓	0.901	0.518	0.709

• Experiments

- Finetuning for Downstream Tasks
 - -Feed-forward Novel View Synthesis
 - ⑦ 기존 방법은 카메라 파라미터가 주어진 입력 이미지를 받아, 새로운 카메라 위치에 해당하는 이미지를 예측

╬LVSM을 따라 VGGT를 직접 RGB 이미지를 출력하도록 수정

☆4개의 입력 뷰를 사용하고, Plücker ray를 이용해 타겟 시점 정보를 표현

- Experiments
 - Finetuning for Downstream Tasks
 - -Dynamic Point Tracking
 - e;; Metric

✓Occlusion Accuracy (OA) : occlusion 예측의 binary accuracy

✓Mean proportion of visible points accuracy

✓ Average Jaccard (AJ) : 추적 및 가려짐 예측 모두 고려 평균 자카드 지수

응수정된 CoTracker2를 Kubric 데이터셋에서 전체 파인튜닝

하당 태스크에 특화되어 있지 않음에도 우수한 성능

Method	Kinetics			ł	RGB-	S	DAVIS		
Weulou	AJ	$\delta_{\rm avg}^{\rm vis}$	OA	AJ	$\delta_{\rm avg}^{\rm vis}$	OA	AJ	$\delta_{\rm avg}^{\rm vis}$	OA
TAPTR [63]	49.0	64.4	85.2	60.8	76.2	87.0	63.0	<u>76.1</u>	<u>91.1</u>
LocoTrack [13]	52.9	66.8	85.3	69.7	<u>83.2</u>	<u>89.5</u>	62.9	75.3	87.2
BootsTAPIR [26]	<u>54.6</u>	<u>68.4</u>	<u>86.5</u>	<u>70.8</u>	83.0	89.9	61.4	73.6	88.7
CoTracker [56]	49.6	64.3	83.3	67.4	78.9	85.2	61.8	76.1	88.3
CoTracker + Ours	57.2	69.0	88.9	72.1	84.0	91.6	64.7	77.5	91.4

• Discussion

Limitations

- -Fisheye or panorama image 처리 지원하지 않음
- 입력 영상의 회전이 극단적인 경우 재구성 성능 저하
- 소규모 non-rigid 움직임 장면 처리 가능하나, 크게 변형되는 경우 실패
- -But, 최소한의 구조 수정과 함께 대상 데이터셋에 대해 fine-tuning 통해 극복 가능

- Runtime and Memory

-NVIDIA H100 GPU Flash Attention v3 사용 수행

e;; Resolution : 336 x 518

Input Frames	1	2	4	8	10	20	50	100	200
Time (s)	0.04	0.05	0.07	0.11	0.14	0.31	1.04	3.12	8.75
Mem. (GB)	1.88	2.07	2.45	3.23	3.63	5.58	11.41	21.15	40.63

Table 9. Runtime and peak GPU memory usage across different numbers of input frames. Runtime is measured in seconds, and GPU memory usage is reported in gigabytes.

• Discussion

Single-view Reconstruction

- MASt3R-SLAM: Real-time dense SLAM with 3D reconstruction priors [CVPR 2025]
 - Imperial College London

- Introduction
 - Robust and accurate visual SLAM
 - 하드웨어와 소프트웨어가 통합된 스택을 신중히 설계를 통해 가능
 - -그러나, plug-and-play 방식으로 쉽게 사용 가능하지 않음
 - Hardware 전문성과 calibration 요구
 - IMU와 같은 추가 센서 없이 minimal single camera setup에서 pose와 일관된 dense map제공 in-the-wild 환경 SLAM 시스템 존재하지 않음
 - -Reliable dense SLAM system은 spatial intelligence의 중요한 발전이 될 것

- Introduction
 - 2D image로부터의 SLAM 수행
 - -Time-varying pose와 camera model, 3D scene geometry 추론 필요
 - -Single-view prior
 - 응 Monocular depth and normal 등 한 장의 이미지로부터 3D 기하를 예측

✓모호성이 크고 view 간 일관성이 부족

-Multi-view 기반 prior

⇔Optical flow 등 모호성을 줄일 수 있음

흥Pixel 이동이 camera pose extrinsic과 camera model에 의존

√포즈와 기하 분리가 어려움

- -3D geometry in a common coordinate frame 기반
 - 응이미지 set 이용 pose, camera model, dense geometry 해결
- Two-view 3D reconstruction prior
 - SEDUSt3R and MASt3R
 - 응두장 이미지로부터 common coordinate의 point map 출력

- Introduction
 - Two-view 기반 3D 재구성 prior 사용 이유
 - SfM과 SLAM은 공간적 희소성을 활용해 불필요한 중복을 피함으로써 대규모 일관성을 유지
 - -two-view 구조는 SfM의 기본 단위인 2-view 기하를 반영
 - 모듈화 된 구조를 통해 backend에서의 효율적인 판단과 robust consensus 가능
 - Main contribution
 - -MASt3R 이용 2-view 기반 3D 재구성과 matching prior 기반 bottom-up 설계

응 SLAM system을 위한 순차적 데이터 입력 및 실시간 처리

:: Low-latency matching, map maintenance, large scale optimization 필요

✓Frontend에서 point map local filtering, backend에서 대규모 global optimization

-고정된 카메라 모델이나 매개변수화 된 모델을 가정하지 않은 강건성

응 모든 ray가 고유한 카메라 중심을 지나간다는 가정 외 제약 없음

✓기존 연구의 경우 intrinsic calibration 주어진 상황 가정 다수 존재

- Method
 - Preliminaries
 - -DUSt3R's pipeline
 - ::: Pair of images $I^i, I^j \in \mathbb{R}^{H \times W \times 3}$ 입력
 - :;: Point map $X_i^i, X_i^j \in \mathbb{R}^{H \times W \times 3}$ 출력, Confidences $C_i^i, C_i^j \in \mathbb{R}^{H \times W \times 1}$
 - -MASt3R's pipeline (additional head)
 - $\in d$ -dimensional features for matching $D_i^i, D_i^j \in \mathbb{R}^{H \times W \times d}$
 - $\in \mathbb{C}$ Corresponding confidence $Q_i^i, Q_i^j \in \mathbb{R}^{H \times W \times 1}$

MASt3R pipeline. 회색 영역은 DUSt3R, 파란 head & Fast NN MASt3R's additional head

- Method
 - Pointmap Matching
 - -Tracking과 mapping을 위해 MASt3R의 pointmap과 features 기반 pixel matching $\lim_{i \to i} m_{i,j} = M(X_i^i, X_j^j, D_i^i, D_j^j)$
 - 단순 brute-force matching 방식의 경우 quadratic complexity 발생
 - Global search over all possible pairs of pixel
 - ※DUSt3R의 경우 이를 회피하기 위해 3D point에 k-d tree 적용
 - ✓Pointmap 예측 오류 경우, 3D nearest-neighbor search 부정확
 - 응 MASt3R의 경우 네트워크에서 high-dimensional feature 추가적으로 예측
 - ✓Wider baseline matching and coarse-to-fine scheme 제안
 - ✔Fine 탐색에 수 초의 실행 시간 소요, coarse 또한 k-d tree보다 느림
 - 응 MASt3R-SLAM의 경우 최적화에서 영감을 얻어 local search 기반 접근 수행

- Method
 - Pointmap Matching

-Dense SLAM에서 주로 사용되는 projective data-association 사용

응해당 방식의 경우 closed-form projection 기반 parametric camera model 필요

✓이전 프레임 3D point cloud, 현재 프레임 카메라 포즈로 변환 후 투영

응그러나, 본 연구의 경우 모든 ray가 단일한 카메라의 중심을 지난다는 단일 가정

✓주어진 pointmap에 대해 generic camera model의 I^i with the rays $\psi(X_i^i)$

• Generic camera calibration method 'Why having 10,000 parameters in your camera model is better than twelve' [CVPR 2020]

✓각 point를 독립적으로 최적화하여 ray error 최소화

 $\checkmark p^* = argmin_p \left\| \psi\left(\left[X_i^i \right]_p \right) - \psi(x) \right\|^2, x \in X_i^j$

- Method
 - Pointmap Matching
 - -Normalized vector 사이의 Euclidean distance를 minimise하는 것은 normalized ray 사이의 각도를 최소화 하는 것과 동일하므로
 - $\|\psi_1 \psi_1\|^2 = 2(1 \cos\theta), \cos\theta = \psi_1^T \psi_2$

 ✓ 'Why having 10,000 parameters in your camera model is better than twelve'
 [CVPR 2020] 유사한 방식으로 non-linear least squares form을 통해 Levenberg-Marquardt 알고리즘으로 업데이트 가능

- LM 알고리즘 : 비선형 최소제곱 문제를 풀기 위한 고전적인 최적화 기법
- 가우스-뉴턴 방식과 확률적 경사 하강법(SGD) $(J^T J + \lambda I)\Delta x = -J^T f$
- (이하생략)
- ☆ 결론) 매칭 과정은 GPU에서 대규모 병렬처리가 가능하며, SLAM의 점진적 특성 활용 가능

✔Tracking 과정은 2ms, 새롭게 추가되는 edge에 대해 a few ms 수행 가능

응포즈 추정값에 의존하지 않고 MASt3R의 출력만을 사용하여 unbiased 결과 제공

- Tracking and Pointmap Fusion
 - Low-latency tracking in SLAM
 - -Keyframe-based system, 현재 frame과 마지막 keyframe 사이 transformation 추정 응 효율성을 위해 a single pass of the network 추구
 - -Minimizing the 3D point error

- Method
 - Graph Construction and Loop Closure
 - -Tracking 중 유효 매칭 수가 임계값 아래로 떨어질 경우 새로운 keyframe K_i 추가

 $:: K_i$ 가 추가되면, 이전 keyframe K_{i-1} 과 bidirectional edge 추가

응시간 순서대로 estimated pose를 제약

✓그럼에도 drift가 발생할 수 있음

-Small and large loop를 close하기 위해, MASt3R –SfM의 ASMK 사용

응 Aggregated Selective Match Kernel : feature 이용 image 간 graph 구성

Backend Optimization

- 최적화 목표는 모든 pose와 기하 정보 간 전역적인 일관성을 달성하는 것

$$\lim_{k \to \infty} E_p = \sum_{m,n \in m_{f,k}} \left\| \frac{\psi(\tilde{x}_{k,n}^k) - \psi(T_{kf} x_{f,n}^f)}{w(q_{m,n},\sigma_p^2)} \right\|_{\rho}$$

응 Gauss-Newton 방법을 사용해 solve하되, dense하지 못하기 때문에 sparse Cholesky decomposition 수행, CUDA 구현으로 병목 현상 회피(이후 생략)

• Method

- Results
 - -다양한 real-world dataset 대상 시스템 평가

응 Localization을 위해 monocular SLAM benchmark 이용

-Camera Pose Estimation

Table 1. Absolute trajectory error (ATE (m)) on TUM RGB-D [38].

		360	desk	desk2	floor	plant	room	rpy	teddy	xyz	avg
	ORB-SLAM3 4	Х	0.017	0.210	Х	0.034	Х	Х	Х	0.009	-
	DeepV2D [42]	0.243	0.166	0.379	1.653	0.203	0.246	0.105	0.316	0.064	0.375
	DeepFactors [6]	0.159	0.170	0.253	0.169	0.305	0.364	0.043	0.601	0.035	0.233
Calibrated	DPV-SLAM [22]	0.112	0.018	0.029	0.057	0.021	0.330	0.030	0.084	0.010	0.076
Canbrated	DPV-SLAM++ [22]	0.132	0.018	0.029	0.050	0.022	0.096	0.032	0.098	0.010	0.054
	GO-SLAM [54]	0.089	0.016	0.028	0.025	0.026	0.052	0.019	0.048	0.010	0.035
	DROID-SLAM [45]	0.111	0.018	0.042	0.021	0.016	0.049	0.026	0.048	0.012	0.038
	Ours	0.049	0.016	0.024	0.025	0.020	0.061	0.027	0.041	0.009	0.030
Uncalibrated	DROID-SLAM* [45, 48]	0.202	0.032	0.091	0.064	0.045	0.918	0.056	0.045	0.012	0.158
Uncandrated	Ours*	0.070	0.035	0.055	0.056	0.035	0.118	0.041	0.114	0.020	0.060

- Dense Geometry Evaluation

Table 3. Reconstruction Evaluation on 7-Scenes and EuRoC with all metrics in metres.

7-scenes	ATE	Accuracy	Completion	Chamfer
DROID-SLAM	0.049	0.115	0.040	0.077
Spann3R @20	N/A	0.069	0.047	0.058
Spann3R @2	N/A	0.124	0.043	0.084
Ours	0.047	0.074	0.057	0.066
Ours*	0.066	0.068	0.045	0.056
EuRoC	ATE	Accuracy	Completion	Chamfer
DROID-SLAM	0.022	0.173	0.061	0.117
Ours	0.041	0.099	0.071	0.085
Ours*	0.164	0.108	0.072	0.090

- Method
 - Limitations
 - 프론트엔드에서 포인트맵(pointmap)을 필터링함으로써 정확한 지오메트리를 추정 응 전체 글로벌 최적화 과정에서 모든 지오메트리를 정제(refine)하지 않음
 - -DROID-SLAM은 bundle adjustment 통해 픽셀 단위의 깊이(depth) 최적화
 - ☆ MASt3R-SLAM의 경우 비일관적인(incoherent) 지오메트리를 허용
 - 예측에서 나타나는 geometry 일관성 유지하며, 3D에서 글로벌하게 정합시키는 방식을 real-time 수행하는 것은 흥미로운 방향이 될 것
 - -MASt3R는 pinhole camera 이미지에만 학습되어 있기 때문에, 카메라 distortion 커질수록 geometry 예측 성능이 저하

