2025 동계 세미나

Low bit post-training quantization

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Outline

- Intro
- Papers
 - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer (ECCV 2024)
 - SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models (ICLR 2025)

Intro

- What is quantization?
 - 모델 최적화를 위한 motivation
 - Performance $\uparrow \rightarrow$ Model size \uparrow
 - 휴 컴퓨터 비전에서 모델들은 모델 사이즈를 크게 가지면서 성능을 향상
 - →모델 학습의 시간, latency 및 비용 증가
 - Edge device
 - ╬ Edge device의 부족한 메모리 용량
 - Applications such as real-time intelligent
 - \pm health care monitoring, autonomous driving, ...
 - Method for optimizing models
 - Quantization, Pruning, Knowledge Distillation, Efficient Network Design
 - Quantization은 파라미터의 값(weight, activation)의 표현 정밀도를 낮추는 과정
 - Floating point (FP32) value \rightarrow INT value
 - Basic equations

Quantization :
$$x_q = \text{clamp}(\left|\frac{x}{s}\right| + z, 0, 2^b - 1)$$

Dequantization : $\hat{x} = s \cdot (x_q - z)$
scale factor $s = \frac{\beta - \alpha}{2^b - 1}$
Zero-point $z = \left|-\frac{\min(x)}{s}\right|$

Intro

- What is quantization?
 - Fine-tuning methods : PTQ vs QAT
 - Post-Training Quantization (PTQ)
 - ☆ Fine-tuning 없이 pre-trained model에서 모든 weight, activation quantization 파라미터를 quantization하는 방식
 - ;; Inference에서 quantization하는 방법
 - 응 QAT와 비교하여 낮은 accuracy
 - Quantization-Aware Training (QAT)
 - ⇔ Fine-tuning을 하면서 loss를 최소로 하는 최적의 파라미터 찾는 방식

 Ecoss를 최소로 하는 최적의 파라미터 찾기 위해 fine-tuning에 많은 시간과 비용을 들이는 단점 존재

 PTQ와 비교하여 높은 accuracy 달성

< Overview of QAT and PTQ >

AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer (ECCV 2024)

- Keyword
 - PTQ, low-bit quantization, imge classification, vit-based models
- Introduction
 - Image classification task에서 quantization의 한계
 - 기존 방법들이 low-bit에서는 큰 정확도 하락
- Analysis
 - 1) Inflexible Logarithm Base.
 - 기존의 log2, log√2 와 같은 고정된 log 기반 quantization 방법에서의 문제
 - 2) Excessively sparse partition of hyperparameter search space.
 - 기존의 grid search 기반 방법에서의 문제

- Method
 - Adalog quantization
 - Adaptive Logarithm Base Quantizer
 - 🔅 Power-law probability 분포를 잘 처리하기 위한 방법
 - 🔅 Post-Softmax, Post-GELU
 - Fast Progressive Combining Search
 - 🔅 빠르게 하이퍼파라미터를 최적화하기 위한 방법
 - 宗 QKV, Proj, FC1, FC2, MatMul1 및 MatMul2

< Illustration on the framework >

- Method
 - Adaptive Logarithm Base Quantizer
 - 최적의 로그 밑수를 적응적으로 탐색하는 방법
 - Log2 quantizer

Quantization:
$$A^{Z} = \operatorname{clamp}\left(\left[-\log_{2}\frac{A}{s}\right], 0, 2^{bit} - 1\right)$$

Dequantization: $\hat{A} = s \cdot 2^{-A^{Z}}$

※ Log2 quantizer는 하드웨어 친화적이지만 low-bit quantization에서는 에러 증가

- $\text{Log}\sqrt{2}$ quantizer $Overtization: \Delta^{Z} = \text{clamn}(|-2\log_2 \frac{A}{2}|, 0, 2^{bit} - 1)$

Quantization:
$$A^{Z} = \operatorname{clamp}\left(\left[-2\log_{2}\frac{x}{s}\right], 0, 2^{bit} - 1\right)$$

Dequantization: $\hat{A} = \tilde{S} \cdot 2^{\left[-\frac{A^{Z}}{2}\right]}; \tilde{S} = s \cdot (p[x^{Z}] \cdot (\sqrt{2}-1)+1)$
 $\Leftrightarrow \operatorname{Log}\sqrt{2}$ quantizer는 Log2 quantizer보다 에러가 적지만 하드웨어 비친화적

- Adaptive Logarithm Base Quantizer

Quantization:
$$A^{Z} = \operatorname{clamp}\left(\left[-\log_{b} \frac{A}{s}\right], 0, 2^{bit} - 1\right)$$

= $\operatorname{clamp}\left(\left[\frac{-\log_{2} \frac{A}{s}}{-\log_{2} b}\right], 0, 2^{bit} - 1\right)$
Dequantization: $\hat{A} = s \cdot b^{-A^{Z}}$
 $b^{-A^{Z}}$ 연산의 bit shift로 가속화 진행 불가 (하드웨어 친화적이지 않음)

- Method
 - Adaptive Logarithm Base Quantizer
 - 밑수 b를 사용하는 경우의 문제점 해결 방안

응 유리수로 근사화 (log2 b using a rational number, i.e., $\log_2 b \approx q/r$)

Application of Adaptive Logarithm Base Quantizer in MatMul2

$$\therefore \text{Dequantization: } \hat{A} \cdot \hat{B} = s_A \cdot (2^{-\tilde{A}^Z \circ} 2^{-\tilde{U}}) \cdot s_B \cdot B^Z$$
$$= s_A \cdot s_B \cdot s_{table} \cdot [(\tilde{U}^Z B^Z) \gg \tilde{A}^Z]$$

< standard linear integer multiplication >

- Method
 - Adaptive Logarithm Base Quantizer for Post-GELU Layers
 - Post-Softmax (MatMul2)와 유사한 Post-GELU (FC2) layers의 power-law distribution

∯ 문제점

- ✓ Data distribution이 서로 다른 layer 사이에서 큰 변동 존재
- ✓ 값의 대부분이 -0.17 ~ 0 에 집중
- 승 Adaptive Logarithm Base Quantizer 변형
 - ✓ 양수 값만 처리하므로 이를 해결하기 위해 Bias Reparameterization 기법 사용

- Method
 - Adaptive Logarithm Base Quantizer for Post-GELU Layers
 - Post-GELU linear layer FC2 수식 재구성

$$Y = W \cdot X + b \qquad X = (-0.17, 0]$$

= $W \cdot (X + 0.17 \cdot 1_{mxn}) + (b - 0.17 \cdot W \cdot 1_m)$
 $X': \ \mathfrak{S} \uparrow$
$$X' = \operatorname{Clamp}\left(\left[-\log_b \frac{X'}{s}\right], 0, 2^{bit} - 1\right)$$

Dequantization: $\hat{X}' = s \cdot b^{-X'^{Z}} \approx X + 0.17 \cdot 1_{mxn}$

$$b_{\rm rep} = b - 0.17 \cdot \widehat{W} \cdot 1_m$$

$$\therefore \text{ Dequantization: } \widehat{W} \cdot \widehat{X} = s_X \cdot (2^{-\widetilde{X}^Z \circ} 2^{-\widetilde{U}}) \cdot s_W \cdot W^Z + b_{\text{rep}}$$
$$= s_X \cdot s_W \cdot s_{table} \cdot [(\widetilde{U}^Z W^Z) \gg \widetilde{X}^Z] + b_{\text{rep}}$$

- Method
 - Fast Progressive Combining Search
 - 두 가지 종류의 하이퍼파라미터를 빠르게 결정하기 위한 방법
 - : Uniform quantizer and AdaLog quantizer
 - 기존 방법과의 차이점
 - ☆ Brute-force search: 가능한 모든 하이퍼파라미터 조합 탐색
 - \checkmark Complexity of brute-force search is O(nm) ; n and m are the number of candidates
 - ☆ Alternating search: 한 하이퍼파라미터를 고정한 상태에서 다른 하이퍼파라미터를 탐색
 - ✓ Complexity of alternating search is O(n+m)
 - ✓ Local minimum으로 인한 성능 하락 존재
 - Beam Search: 탐색 공간에서 최적의 하이퍼파라미터를 찾기 위해 상위 k개의 후보만 유지하며 탐색하는 방법 기반으로 설계
 - ✓ 모든 조합을 찾는 Brute-force에 비해 낮은 complexity
 - ✓ Local minimum 방지

- Method
 - Fast Progressive Combining Search
 - Initialization step: 넓은 범위에서 A와 B의 후보 값을 설정하여 초기 후보 집합 C_0 생성
 - Progressive searching step: 각 반복 단계에서 후보를 대략적 탐색, 해당 후보 주변에서 탐색 세분화
 - Final step: 최적의 a*, b* 하이퍼파라미터를 선택하여 quantization loss 최소화

Algorithm 1 Fast Progressive Combing Searching.	
Input: Coefficients x, y, z_1, z_2, k, p ; a pretrained full-precision model; a set of	cali-
bration data \mathcal{D}_{calib} ; and the <i>l</i> -th layer to be quantized ϕ_l .	
Output: Quantization hyperparameters a^*, b^* .	
# The initialization step:	
1: Generate the raw input X_l and output O_l by ϕ_l based on \mathcal{D}_{calib} , and compute	e the
percentiles pct_0 , $pct_{0.1}$, $pct_{0.9}$ and pct_1 by [14].	
2: Compute the uniform partition of the first and second hyperparameters as	$\mathcal{A} =$
$\{pct_{0.1} + i \cdot \tau_A i = 0, \cdots, x\}$ and $\mathcal{B} = \{pct_{0.9} + j \cdot \tau_B j = 0, \cdots, y\}$ with the interval	ervals
$\tau_A = (pct_0 - pct_{0.1})/x$ and $\tau_B = (pct_1 - pct_{0.9})/y$.	
3: Generate the candidate set C_0 as the Cartesian product of \mathcal{A} and \mathcal{B} : $C_0 = \mathcal{A}$	$ imes \mathcal{B}.$
# The progressive searching step:	
4: for $i = 0, \dots, p$ do	
# The coarse searching step:	
5: Construct the subset $\mathcal{C}' \subset \mathcal{C}_i$ by selecting the partitions that have the	top-k
smallest quantization loss.	
# The expanding step:	
6: Update the intervals for fine partitions: $\tau_A := \tau_A/(2 \cdot z_1), \ \tau_B := \tau_B/(2 \cdot z_2)$	2).
7: Update the candidate set with fine partitions: $C_{i+1} = \{(a+i\cdot\tau_A, b+j\cdot\tau_B) (a+i\cdot\tau_A, b+j\cdot\tau_B) (a+i\cdot\tau_B, b+j\cdot\tau_B) (a+i\cdot\tau_$	$(,b) \in$
$\mathcal{C}'; i=-z_1,\cdots,z_1; j=-z_2,\cdots,z_2\}.$	
8: end for	
9: The optimal hyperparameter $(a^*, b^*) \in \mathcal{C}_p$ is the one that has the smallest qu	ianti-
zation loss.	

- Method
 - Fast Progressive Combining Search

- Step 1. Initialization
 - 🔅 대략적인 search를 통해 넓은 범위에서 초기 최적 후보 선택
- Step 2. Progressive searching
 - ☆ 선택된 유망한 후보들 주변에서 탐색 범위를 세분화하여 더 정밀한 탐색 수행
 - ☆ Search width: 각 하이퍼파라미터에서 선택된 후보 주변에서 다시 3개의 후보 값을 추가 탐색 (3)
- Step 3. Final
 - ☆ 가장 최적의 후보를 중심으로 quantization loss가 최소가되는 하이퍼파라미터 결정

- Experimental Results
 - ImageNet dataset에서 다양한 모델에서 Image classification task 실험 결과

Model	Full Prec.	Method	W3/A3	W4/A4	W6/A6
		PTQ4ViT	0.10	42.57	78.63
V:T C /004	01.90	APQ-ViT	-	47.95	79.10
V11-5/224	81.39	$\operatorname{RepQ-ViT}$	0.10	65.05	80.43
		AdaLog (Ours)	13.88	72.75	80.91
		PTQ4ViT	0.10	30.69	81.65
ViT_B / 224	94 54	APQ-ViT	-	41.41	82.21
V11-D/224	04.04	$\operatorname{RepQ-ViT}$	0.10	68.48	83.62
		AdaLog (Ours)	37.91	79.68	84.80
		PTQ4ViT	3.50	36.96	69.68
Do:T T /994	70.01	APQ-ViT	-	47.94	70.49
Del 1 - 1 / 224	(2.21	$\operatorname{RepQ-ViT}$	0.10	57.43	70.76
		AdaLog (Ours)	31.56	63.52	71.38
		PTQ4ViT	0.10	34.08	76.28
DoiT S/224	70.95	APQ-ViT	-	43.55	77.76
Del 1-5/224	(9.85	RepQ-ViT	0.10	69.03	78.90
		AdaLog (Ours)	24.47	72.06	79.39
		PTQ4ViT	31.06	64.39	80.25
DoiT P/224	91 90	APQ-ViT	-	67.48	80.42
Del1-D/224	81.80	$\operatorname{RepQ-ViT}$	0.10	75.61	81.27
		AdaLog (Ours)	57.45	78.03	81.55
		PTQ4ViT	28.69	76.09	82.38
Swip 8/224	on 11	APQ-ViT	-	77.15	82.67
5wiii-6/224	03.23	$\operatorname{RepQ-ViT}$	0.10	79.45	82.79
		AdaLog (Ours)	64.41	80.77	83.19
		PTQ4ViT	20.13	74.02	84.01
Swip B/224	or 97	APQ-ViT	-	76.48	84.18
БWШ-D/224	85.27	$\operatorname{RepQ-ViT}$	0.10	78.32	84.57
		AdaLog (Ours)	69.75	82.47	85.09

- 1) Wu, Zhuguanyu, et al. "Adalog: Post-training quantization for vision transformers with adaptive logarithm quantizer." European Conference on Computer Vision. Springer, Cham, 2025.
- 2) Li, Zhikai, et al. "Repq-vit: Scale reparameterization for post-training quantization of vision transformers." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
 - 3) Li, Yuhang, Xin Dong, and Wei Wang. "Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks." arXiv preprint arXiv:1909.13144 (2019).

- Experimental results
 - Ablation studies
 - Effect of the main components

AdaLog	FPCS ViT-S (81.39		(81.39)	DeiT-T	C (72.21)	Swin-S (81.80)		
Tradbog		W3/A3	W4/A4	W3/A3	W4/A4	W3/A3	W4/A4	
		3.51	62.20	22.73	58.01	44.65	78.40	
\checkmark		11.40	72.01	28.41	62.87	61.50	80.46	
	\checkmark	3.77	63.14	24.80	59.93	44.61	78.79	
\checkmark	\checkmark	13.88	72.75	31.56	63.52	64.41	80.77	

- On the Efficiency of AdaLog
 - 응 AdaLog는 quantized LUT를 사용하여 RepQ-ViT² (Log√2 quantizer) 보다 효율적

✓ FixOP³): 8bit weight와 8bit activation 값 사이의 하나의 연산

Model	\mathbf{Bits}	Method	Prec.	FixOPs	Model Size
DeiT-T	$4/4 \ 4/4$	RepQ-ViT	57.43	0.613B	3.4MB
FixOPs: 20.1B		AdaLog	63.52	0.539B	3.4MB
FixOPs: 20.1B	$3/3 \ 3/3$	RepQ-ViT	0.10	0.444B	2.7MB
Size: 21.9MB		AdaLog	31.56	0.391B	2.7MB

- Experimental results
 - Ablation studies
 - On the Efficiency of FPCS

Model	\mathbf{Method}	Top-1 Acc. (%)	Complexity	GPU Min.
DeiT-T/224 (W3A3)	Alternating [35] Brute Force [31] FPCS (Ours)	28.41 32.04 31.56	$O(n) \\ O(n^2) \\ O(pn)$	$3.3 \\ 183 \\ 4.1$
DeiT-S/224 (W3A3)	Alternating [35] Brute Force [31] FPCS (Ours)	22.17 29.38 28.51	$O(n) \\ O(n^2) \\ O(pn)$	$5.7 \\ 312 \\ 6.5$

- Results on the post-GELU quantizers

Method	Rep.	ViT-S	ViT-B	DeiT-T	DeiT-S	DeiT-B	$\mathbf{Swin}\textbf{-}\mathbf{S}$	Swin-B
Full-Precision	-	81.39	84.54	72.21	79.85	81.80	83.23	85.27
Uniform [2]	×	63.14	78.08	59.93	69.23	76.02	78.79	80.67
T-Uniform [5]	×	65.29	<u>78.76</u>	60.96	69.78	76.69	80.51	80.93
Log2 [4]	\checkmark	39.83	71.27	59.33	66.30	68.53	80.36	78.95
$\log\sqrt{2}$ [2]	\checkmark	72.44	46.16	$\underline{62.91}$	70.60	77.15	75.91	24.50
AdaLog	\checkmark	72.75	79.68	63.52	72.06	78.03	80.77	82.47

SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models (ICLR 2025)

- Keyword
 - PTQ, low-bit quantization, diffusion models
- Introduction
 - Diffusion model의 inference time 증가
 - Moore's law slows down
 - 고품질 이미지를 생성하는데 모델이 커지면서 메모리 요구 사항이 크게 증가하여 inference time 증가
 - Diffusion model의 quantization 한계
 - 기존 방법들은 outlier로 인해 low-bit에서는 큰 정확도 하락을 확인
- Analysis
 - 1) Quantize activations
 - Weight만 quantization하는 방식은 GPU에서 가속화 불가능
 - Weight와 activation을 동일한 bit로 quantization 진행
 - 2) Memory access overhead

- Method
 - SVDQuant
 - Outlier Migration
 - 응: Activation과 weight의 outlier migration
 - Low-rank branch via SVD decomposition
 - ☆ Quantization을 용이하기 위해 low-rank branch를 통해 outlier migration 보정
 - LoRunner: Kernel fusion
 - ╬ Low-rank branch 실행 시 추가적인 메모리 비용 발생
 - ☆ 메모리 접근 최소화 및 속도 향상을 위한 LoRunner 설계

< Overview of SVDQuant >

- Method
 - Migrate outliers from activation to weight
 - Quantization 시 activatio과 weigh에 outlier가 존재하여 양자화 오류가 크게 증가

- Error decomposition $\begin{cases} E(X,W) = \|XW Q(X)Q(W)\|_{F} \\ E(X,W) \le \|X\|_{F} \|W Q(W)\|_{F} + \|X Q(X)\|_{F} (\|W\|_{F} + \|W Q(W)\|_{F}) \end{cases}$
 - Smoothquant²⁾ 방법을 사용하여 activation에서 outlier를 제거하기 위해 크기를 줄이고 weight를 조정
 - \therefore Activation X와 weight X를 채널별 smoothing 계수 λ 를 사용해 scaling
 - $\hat{X} = X \cdot \operatorname{diag}(\lambda)^{-1}$, $\hat{W} = W \cdot \operatorname{diag}(\lambda)$; scaling $\lambda = \max(|X|)^{\alpha} / \max(|W|)^{1-\alpha}$
 - ※ Smoothed activation은 크기가 줄어들고 outlier가 감소하여 quantization error 감소
 - : Smoothed weight는 크기와 outlier가 증가하여 quantization error 증가
 - 따라서, total quantization error 감소가 제한적

< Example value distribution of inputs and weights in PixArt- Σ >

• Method

- Absorb magnified weight outliers with a low-rank branch
 - Smoothed weight는 크기와 outlier가 증가
 - 16-bit low-rank branch 추가하여 weight의 outlier 흡수

 $\widehat{W} = L_1L_2 + R;$ L_1, L_2 : low-rank, R: residual

 $XW = \hat{X}\hat{W} = \hat{X}L_1L_2 + \hat{X}R \approx \hat{X}L_1L_2 + Q(\hat{X})Q(R) \quad ; L_1, L_2: \text{ low-rank, } R: \text{ residual}$ 16-bit low-rank branch 4-bit residual

- 🔅 Low-rank branch가 weight의 주요 정보를 보존 residual의 크기와 outlier를 감소
- \hat{X} 는 outlier에서 자유롭기 때문에 $||R||_F$ 와 $||R Q(R)||_F$ 최적화

$$E(\hat{X}, R) = \|\hat{X}\widehat{W} - (\hat{X}L_{1}L_{2} + Q(\hat{X})Q(R)\|_{F} = \|\hat{X}R - Q(\hat{X})Q(R)\|_{F}$$

$$\leq \|X\|_{F} \|R - Q(R)\|_{F} + \|X - Q(X)\|_{F} (\|R\|_{F} + \|R - Q(R)\|_{F})$$

- Quantization error bound

$$c = \sqrt{\frac{\log(\operatorname{size}(R))\pi}{\operatorname{size}(R)}}$$

R | 정규조건을 만족한다면 $E[\max(|R|)] \le c \cdot E[||R||_{F}] \longrightarrow E[||R - Q(R)||_{F}] \le \frac{c\sqrt{\operatorname{size}(R)}}{q_{\max}} \cdot E[||R||_{F}]; \operatorname{size}(R) = the number of elements in R$ $||R - Q(R)||_{F} \gamma ||R||_{F} ||Q|| \Rightarrow ||R||_{F} = ||\widehat{W} - L_{1}L_{2}||_{F} ||Q|| = 2 \operatorname{Add} L_{1}, L_{2} \mathbb{E}^{4}$ $\operatorname{SVD} = \operatorname{Sid} \operatorname{id} 2 \longrightarrow \widehat{W} = USV \mathbb{E} \operatorname{SVD} \operatorname{Add} \longrightarrow \operatorname{Add} L_{1} = U_{:,1:r}, L_{2} = V_{1:r,:}$

- Low-rank branch를 반복적으로 업데이트하고 R을 조정함으로써 quantization error 감소

- Method
 - LORUNNER: FUSING LOW-RANK AND LOW-BIT BRANCH KERNELS
 - Low-rank branch는 계산 비용이 적지만 memory access bottleneck으로 인해 50% 추가 latency 발생
 - ☆ 입력 및 출력 데이터 크기가 줄어들지 않아 memory acces가 높은 비용
 - ☆ Diffusion transformer block에서 QKV projection은 출력 크기가 L2 cache를 초과

✓ DRAM으로의 추가적인 load 및 store operation 발생

- LoRunner kenel fusion
 - Shared input: Down projection과 quantize 커널은 동일한 input 공유
 - 🤃 Shared output: Up projection과 4bit compute 커널은 동일한 output 공유
 - Eow-rank branch와 activation을 공유하여 추가 메모리 접근을 제거하고 커널 호출 횟수를 절반으로 줄여 5~10%의 추가 latency만 발생

• Experimental Results

• MJHQ-30K, Densely Captioned Images (DCI) dataset에서의 정량적 평가

						MJHQ		sDCI			
Backbone	Model	Precision	Method	Quality		Similarity		Quality		Simi	larity
				$FID(\downarrow)$	IR (†)	LPIPS (\downarrow)	$PSNR(\uparrow)$	FID (↓)	IR (†)	LPIPS (\downarrow)	PSNR (†)
		BF16	-	20.3	0.953	-	-	24.8	1.02	-	-
	FLUX.1	INT W8A8	Ours	20.4	0.948	0.089	27.0	24.7	1.02	0.106	24.9
-de (50 S	-dev (50 Steps)	W4A16 INT W4A4 FP W4A4	NF4 Ours Ours	20.6 20.0 20.9	0.910 0.924 0.932	0.272 0.259 0.245	19.5 20.0 20.2	24.9 24.6 25.6	0.986 0.992 0.998	0.292 0.275 0.269	18.2 18.8 18.7
		BF16	-	19.2	0.938	-	-	20.8	0.932	-	_
	FLUX.1	INT W8A8	Ours	19.2	0.966	0.120	22.9	20.7	0.975	0.133	21.3
DiT -schne (4 Step	DiT -schnell (4 Steps)	W4A16 INT W4A4 FP W4A4	NF4 Ours Ours	18.9 18.1 20.1	0.943 0.965 0.957	0.257 0.292 0.281	18.2 17.5 17.4	20.7 19.8 21.7	0.953 0.986 0.971	0.263 0.298 0.280	17.1 16.4 16.6
	PixArt-Σ (20 Steps)	FP16	-	16.6	0.944	-	-	24.8	0.966		
		INT W8A8 INT W8A8	ViDiT-Q Ours	15.7 16.3	0.944 0.955	0.137 0.109	22.5 23.7	23.5 24.2	0.974 0.969	0.163 0.129	20.4 21.8
		INT W4A8 INT W4A4 INT W4A4 FP W4A4	ViDiT-Q ViDiT-Q Ours Ours	37.3 412 20.1 18.3	0.573 -2.27 0.898 0.946	0.611 0.854 0.394 0.326	12.0 6.44 16.2 17.4	40.6 425 25.1 23.7	0.600 -2.28 0.922 0.978	0.629 0.838 0.434 0.357	11.2 6.70 14.9 16.1
		FP16	_	24.3	0.845	_	_	24.7	0.705	_	_
	SDXL	INT W8A8 INT W8A8	MixDQ Ours	24.1 24.3	0.834 0.845	0.147 0.100	21.7 24.0	25.0 24.8	0.690 0.701	0.157 0.110	21.6 23.7
UNet	-Turbo (4 Steps)	INT W4A8 INT W4A4 INT W4A4 FP W4A4	MixDQ MixDQ Ours Ours	27.7 353 24.2 24.1	0.708 -2.26 0.796 0.822	0.402 0.685 0.279 0.250	15.7 11.0 17.7 18.5	25.9 373 25.7 24.7	0.610 -2.28 0.657 0.699	0.415 0.686 0.289 0.261	15.7 11.3 17.6 18.4
		FP16	-	16.6	0.729	-	-	22.5	0.573	-	_
	SDXL (30 Steps)	INT W8A8 INT W8A8	TensorRT Ours	20.2 16.6	0.591 0.718	0.247 0.119	22.0 26.4	25.4 22.4	0.453 0.574	0.265 0.129	21.7 25.9
	(50 Steps)	INT W4A4 FP W4A4	Ours Ours	21.4 19.0	0.591 0.607	0.306 0.294	20.4 21.0	26.8 25.4	0.470 0.480	0.320 0.312	20.3 20.7

- Experimental Results
 - MJHQ-30K dataset에서의 정성적 평가

- Experimental Results
 - FLUX.1 model에서의 memory save & speedup
 - 전체 size 3.6x 감소와 low-rank branch로 인한 0.3 GiB overhead
 - Inference engine LoRunner로 1.2x memory fooprint 절약
 - 3.2x, 3.5x speedup

- Trade-off of increasing rank
 - The results of different rank r in SVDQuant on PixArt- Σ

Prompt: award winning photography of a beautiful medic smiling

Thank you

