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Background

» What is Monocular Depth Estimation?

- Monocular depth estimation aims to transform a photographic image into a depth map,
I.e., evaluate a range value for every pixel

- Task arises whenever the 3D structure of scene is needed, and no direct range or stereo
measurements are available

-Used for 3D reconstruction, autonomous driving etc.

- Projecting 3D world to 2D image is geometrically ill-posed problem, solvable by prior
knowledge of scene
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Background

» What is Metric Depth?

- Shows accurate depth to any point given in an image

- These days most models produce inverse relative depth, following the work of MiDaS
-Foundation models are trained on many different datasets
-Used to gain great zero-shot accuracy
:': Not every used dataset features necessary metadata for accurate metric depth
:'= Unable to produce accurate metric depth, therefore normalize on scale from 0-255

- Metric depth necessary for most downstream tasks though
- Different ways to earn metric depth

-Previous works focused on fine-tuning a MDE model with a certain dataset to earn metric data
for this environment

- Other works try to guess global scale and shift and apply them to all images
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Background

» How do CLIP-based depth models work?

- Most works function by using so called depth bins
- Contain a set depth value for a certain type of scene

=+ If the input class from the text prompt aligns with the given bin, it is set to that depth
value

- Either human-set or can also be learned on their own

- Due to this still has many restrictions and does not perform as well as other MDE methods
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 Depth Pro: Sharp Monocular Metric Depth in Less Than a Second (arXiv 2024)
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Introduction

 Foundation model for zero-shot metric monocular depth estimation
« Motivation

- Depth estimators should work zero-shot on any image
- Should not be restricted to certain domain
-Should ideally produce metric depth maps for broad applicability

- Metric depth should be accessible without meta data like camera intrinsics
- Depth estimators should operate at high resolution and produce fine-grained depth maps
- Should have low latency

-High-resolution images should still be processable

« Fast metric prediction with absolute scale and high boundary tracing

- Produces 2.25-megapixel depth map in 0.3 seconds
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Method

e Network architecture

- Key idea is to apply ViT on patches at multiple scales
-Results get fused into single high-resolution dense prediction
- Employs two ViT encoders for predicting depth
- Patch encoder
- Image encoder

- Decoder resembles DPT

- Separate VIT and focal length head encoder to predict focal length
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Method

 Depth prediction network

- Patch encoder

- Applied on patches which were extracted at multiple scales

- Allows learning scale-invariant representations, as weights are shared across scales
- Image encoder

- Anchors patch predictions in global context

- Applied to whole input image
- Downsampled to base input resolution of chosen encoder backbone (here 384x384)
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Method

 Depth prediction network

- Whole network operates at 1536x1536 resolution
- Guarantees sufficient receptive field and constant runtimes for any image

- After downsampling to 1536x1536, image is split into patches of 384x384
—Patches overlap to avoid seams

-Yields 25 and 9 patches respectively
—Patches extracted from all scales (35 in total) then concatenated along batch dimension and fed

into patch encoder
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Method

 Depth prediction network

- Yields feature tensor at resolution 24x24 per input patch (features 3-6)

- At finest scale, further intermediate features are extracted to capture finer details (1-2)

-Yield another 50 feature patches

- Feature patches then get merged into maps
-Maps get fed into DPT decoder

- Patch based approach also has advantage of allowing parallelization

5x5 Overlapping
Image patches
15362 @ 3842
3x3 Overlapping

patches
@ 3842

Down
A e

7682

=
ﬂ 447% CH &

SOGANG UNIY

B Patch =
e Encoder | &

| Image
Encoder

| Image Encoder
for focal length

i) [l (oo

Features 1 @962

Upsampl - -.

e ] (o)

Features 6 @242

Features 2 @962

{Merge] g [Upsample] 11922
Features 3 @962

(i) 8 (i) 8
Features 4 @482 e
Features 5 @242 482

482

L, DPT .
Decoder

Inverse depth
15362

.| Focallength | Focal

Head length

VDS



Method

« Training objectives
- For each input image I, network f, predicts canonical inverse depth image C = f(I)

- Canonical inverse depth prioritizes areas close to camera over farther areas or whole scene

- C describes ground-truth canonical inverse depth

- Obtain dense metric depth map D,,, by scaling horizontal field of view

-Represented by focal length f,,,, and width w: D,,, = %‘

- For training on metric datasets, the mean absolute error (L, 4x) per pixel i is used
A 1 A
‘LMAE(C» C) - N ZI1V|Ci - Ci|

:'= Pixels with error in top 20% per image get discarded for all real-world datasets

;= Chosen for robustness in handling potentially corrupted real-word ground truth
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Method

« Training objectives
- For non-metric datasets, normalize predictions and GT via mean absolute deviation
from median
- Further compute errors on first and second derivatives of inverse depth maps
- Multi-scale derivative loss over M scales as

Lpu(C,C) = %zﬂi}_ sH|v.cl - v.¢/|"

'V, indicates spatial derivative operator *, such as Laplace (L) or Scharr (S) and p the
error norm

:': Scales j computed by blurring and downsampling inverse depth maps
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Method

* Training curriculum

- Based on three observations
-Training on large mix of real-world data and synthetic datasets improves generalization
- Synthetic datasets provide pixel-accurate, high-quality ground truths
:'= Real-world datasets often contain missing areas or mismatched depth
-Predictions get sharper over course of training
- Two-stage training curriculum follows these observations
- In first stage aim to learn robust features that allow network to generalize across domains
;= Train on mix of all labeled data
== Minimize Ly 45 On metric datasets and its normalized version of non-metric ones
:': To steer network towards sharp boundaries, supervise gradients of predictions
;= Done naively can hinder and optimization

v Apply scale-and-shift invariant loss on gradients of only the synthetic data

SOGANG UNIVERSITY 14
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Method

* Training curriculum

- Two-stage training curriculum follows these observations
- Second stage designed to sharpen boundaries and reveal fine details in depth maps
:': To minimize effect of inaccurate GT, train in this stage only on synthetic data
:': Opposed to real data, synthetic data provides high-quality pixel-accurate GTs

' Minimize Ly 45 again and supplement it with selection of first- and second-order derivates
« Focal length estimation

- Predict horizontal angular field-of-view from separate ViT image encoder

- Small convolutional head ingests frozen features from depth estimation network and task-
specific features

-Uses L, training loss

- Gets trained after depth estimation training
- Focal length training is separated

- Has benefits, as avoids necessity of balancing depth and focal length training objectives

- Also allows training of focal length head on focal length supervision datasets
A B VDS
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Method

 Evaluation metrics for sharp boundaries

- Common MDE benchmarks rarely take boundary sharpness into account
- Propose set of metrics specifically for the evaluation of depth boundaries

- Key observation: can leverage existing high-quality annotations for matting, saliency or
segmentation as GT for depth boundaries

- Treat annotations for these tasks as binary maps
- Define foreground/background relationship between object and environment
:'= Only consider pixel around edges in binary maps
- Use pairwise depth ratio of neighboring pixels to define foreground/background relationship
- Occluding contour ¢4 derived from depth map d as

sicq(i,)) = [d(” > (1+ 100)]

v, j are locations of two neighboring pixels

vIndicates presence of occluding contour between pixels i and j if depth differs more
than t%
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Method

 Evaluation metrics for sharp boundaries

- Key observation: can leverage existing high-quality annotations for matting, saliency or
segmentation as GT for depth boundaries

- Can now compute precision P and recall R for all neighboring pixel

i,j en(d) Ca(LNNAcg(i))
2ijen() Ca®s)

i,jen() Ca(LNNcg(i))
2ijenc) ca)

-:j:—P(t):Z and R(t):Z

:': Precision and recall are scale-invariant, for experiment report F1 score

;- Performed weighted averaging of F1 values with thresholds from t,,i, = 5 and t,,0 =
25

- Does not require any manual edge annotation
- Can use pixelwise ground truth available in synthetic datasets
- Given binary mask b over image, define presence of ¢, between pixel i,j as
-cp(i,J) = b)) A =b(j)
- Can compute recall by replacing occluding contours from depth maps with those from binary

maps
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Experiment

» Quantitative results

- Zero-shot metric depth accuracy (64, higher is better)

Method Booster ETH3D  Middlebury NuScenes Sintel ~ Sun-RGBD | Avg. Rank |
DepthAnything (Yang et al., 2024a 523 9.3 393 354 6.9 85.0 5.7
DepthAnything v2 (Yang et al., 2024b) 59.5 36.3 37.2 17.7 5.9 72.4 5.8
Metric3D (Yin et al., 2023 4.7 34.2 13.6 64.4 17.3 16.9 5.8
Metric3D v2 (Hu et al., 2024) 39.4 87.7 29.9 82.6 38.3 75.6 3.7
PatchFusion (Li et al., 2024a) 22.6 518 499 204 14.0 53.6 5.2
UniDepth (Piccinelli et al., 2024) 27.6 253 31.9 83.6 16.5 95.8 4.2
ZeroDepth (Guizilini et al., 2023) OOM OOM 46.5 64.3 12.9 OOM 4.6
ZoeDepth (Bhat et al., 2023) 21.6 34.2 53.8 28.1 7.8 85.7 5.3
Depth Pro (Ours) 46.6 415 60.5 49.1 40.0 89.0 | 2.5
- Zero-shot boundary accuracy (F1 score and recall, higher is better)
Method Sintel FIt  Spring FIt  iBimsFIT  AMR{ P3MRf DISR{
DPT (Ranftl et al., 2021) 0.181 0.029 0.113 0.055 0.075 0.018
o Metric3D (Yin et al., 2023) 0.037 0.000 0.055 0.003 0.003 0.001
= Metric3D v2 (Hu et al., 2024) 0.321 0.024 0.096 0.024 0.013 0.006
E ZoeDepth (Bhat et al., 2023) 0.027 0.001 0.035 0.008 0.004 0.002
< PatchFusion (Li et al., 2024a) 0.312 0.032 0.134 0.061 0.109 0.068
UniDepth (Piccinelli et al., 2024) 0.316 0.000 0.039 0.001 0.003 0.000
. DepthAnything (Yang et al., 2024a) 0.261 0.045 0.127 0.058 0.094 0.023
e DepthAnything v2 (Yang et al., 2024b) 0.228 0.056 0.111 0.107 0.131 0.056
Marigold (Ke et al., 2024) 0.068 0.032 0.149 0.064 0.101 0.049
Depth Pro (Ours) 0.409 0.079 0.176 0.173 0.168 0.077
A szugta
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Experiment

» Quantitative results

- Comparison on focal length estimation (850,, 6599,, higher is better)

DDDP
025% 950%

FiveK
6‘2 5% 4 50%

PPRIOK
da5% O50%

RAISE
das% O50%

SPAQ

525% 550%

ZOOM
d25% 950%

UniDepth (Piccinelli et al., 2024) 6.8 40.3 248 562 13.8 442 354 748 442 774 204 454
SPEC (Kocabas et al., 2021) 146 463 30.2 56.6 346 67.0 492 786 50.0 822 23.2 436
1m2pcl (Baradad & Torralba, 2020) 7.3 29.6 28.0 60.0 242 614 518 752 26,6 55.0 224 428
Depth Pro (Ours) 669 858 742 924 646 888 842 964 684 852 698 91.6
» Qualitative results
Depth Anything v2 Metric3D v2
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« RSA: Resolving Scale Ambiguities in Monocular Depth Estimators through
Language Descriptions (NeurlPS 2024)
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Introduction

* First method for metric-scale monocular depth estimation with language
» Recovers metric-scaled depth maps through linear transformation

- Based on observation, that certain objects (cars, trees, street signs) are typically found
or associated with certain types of scenes (e.g. outdoor)

 Takes as input a text caption describing objects present in a scene and outputs
parameters of linear transformation

- Parameters can then be applied globally to a relative depth map to yield a metric-scaled
prediction

» Model can be trained on multiple datasets to be used in zero-shot settings
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Method

A

. N . .
Consider dataset D = {10, t(),y*(™} _ with N samples synchronized RGB
Images

- [ denotes an image, y™* the ground truth depth map and t a text description of the image

- Assume access to pretrained monocular depth estimation model hg to learn parameters
to predict transformation between relative and metric depth

- Given an image, a MDE predicts inverse relative depth y := hgy(+)

- Consider global linear transformation through use of language description pretraining to
recover metric-scale

"""""""""""""""""""""""" Metric depth

i An image of a modern kitchen t . P ey
1 with dark wooden cabinets, a double | RSA Scale: v '

| sink, granite countertops, and stainless e A
i steel appliances, including a i Model Shift: B
i dishwasher with a towel hangingonit. |
1 1 5

Inverse relative depth
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Method

» Given a text description t, RSA predicts pair of scalars denoting scale and shift
parameters of transformation, described as

(@ B) = gy®)
- @ describes the guessed scale and f the guessed shift
» Metric depth can now be obtained by

y=1/@-y+p)

----------------------------------

i An image of a modern kitchen t .
E with dark wooden cabinets, a double H RSA Scale: &v
i sink, granite countertops, and stainless e A

i steel appliances, including a 1 Model Shift: B

i dishwasher with a towel hanging onit. 1

R g el el I e i o S M R e, L 1

Inverse relative depth §=1/(&-y+p)

*H/
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Method

« RSA model

- Employs pretrained CLIP text encoder as feature extractor to infer scale and shift
- Text encoder frozen within RSA

- First encodes text descriptions into text embeddings and then feed into 5-layer shared
MLP to project them into k = 256 hidden dimensions

-Followed by two separate sets of 5-layers
;= One serves as output head 1, for scale parameter &

;= Other serve as output head ¥ for shift parameter B

- Optimizing RSA involves minimizing supervised loss with respect to v
-y" =arg min X e Fxea M (019 @) =y ™ ()

;9™ =1/@™ . y™ 4 FM)Y js predicted metric-scale depth aligned from relative depth
= x € Q denotes an image coordinate

:': Mdenotes binary mask indicating valid coordinates in ground truth depth

R AW THED VDS
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Method

 Text prompt design
- Require text descriptions to be paired with each image

- Create these descriptions themselves by using different models
- First considered structured text, using a certain template
:': Use MaskDINO to extract significant objects and background in the image

:: For an input image, segmentation model returns set of B object and background instances
{n®, C(i)}if where ¢ denotes class of object and n®) the count of this object

;' Then instances structured to caption: “An image with n(9 ¢ n®@) ¢(2)  n(B) (B »
:': Shuffle order of instances to produce five different of these prompts
-Then consider natural text, which does not follow a certain template
;= Use two visual question-answering models for this
;' Each model provides 5 prompts each
-During training, in each iteration a random of these in total 15 prompts gets chosen
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Experiments

» Quantitative Results

Models Scaling Dataset <1251 6<125°t 6<125°1 AbsRel| log,,| RMSE]
ZoeDepth Image NYUv2 0.951 0.994 0.999 0.077 0.033 0282
DistDepth DA NYUv2 0.706 0.934 - 0.289 - 1.077
DistDepth DA Median NYUv2 0.791 0.942 0.985 0.158 : 0.548
ZeroDepth DA - 0.901 0.961 - 0.100 - 0.380
ZeroDepth DA Median i 0.926 0.986 - 0.081 . 0.338
Median NYUv2 0.736 0.919 0.981 0.181 0.073 0912
Linear Fit NYUv2 0.926 0.991 0.999 0.094 0.040 0.332
Global NYUv2 0.904 0.988 0.998 0.109 0.045 0357
Image NYUv2 0.914 0.990 0.998 0.097 0.042 0350
DPT Image NYUV2.KITTI 0911 0.989 0.998 0.098 0.043 0355
Image NYUv2.KITTLVOID 0.903 0.985 0.997 0.100 0.045 0367
RSA (Ours) NYUv2 0.916 0.990 0.998 0.097 0.042 0.347
RSA (Ours) NYUV2.KITTI 0913 0.988 0.998 0.099 0042 0352
RSA (Ours) | NYUv2,KITTLVOID 0912 0.989 0.998 0.099 0.043 0355
Modian NYUV2 0.449 0.694 0.850 0411 0.151  2.010
Linear Fit NYUv2 0.780 0.970 0.995 0.151 0.069 0433
Global NYUv2 0.689 0.949 0.992 0.183 0.078  0.600
Image NYUv2 0.729 0.958 0.994 0.175 0072 0563
MiDas Image NYUV2.KITTI 0.724 0.952 0.992 0.173 0074 0579
Image NYUv2.KITTLVOID 0712 0.948 0.988 0.181 0.075 0583
RSA (Ours) NYUv2 0.731 0.955 0.993 0.171 0072 0569
RSA (Ours) NYUvV2.KITTI 0.737 0.959 0.993 0.168 0071 0561
RSA (Ours) | NYUv2,KITTLVOID 0.709 0.944 0.989 0.173 0076 0580
Median NYUv2 0.480 0.734 0.886 0.353 0.135  1.743
Linear Fit NYUv2 0.965 0.993 0.997 0.058 0.025 0232
Global NYUv2 0.630 0.926 0.987 0.199 0.087  0.646
Image NYUv2 0.749 0.965 0.997 0.169 0.068 0517
DepthAnything Image NYUV2.KITTI 0.710 0.947 0.992 0.181 0075 0574
Image NYUv2.KITTLVOID 0.702 0.943 0.990 0.178 0.078 0583
RSA (Ours) NYUv2 0.775 0.975 0.997 0.147 0.065  0.484
RSA (Ours) NYUV2.KITTI 0.776 0.974 0.996 0.148 0.065 0498
RSA (Ours) | NYUv2,KITTLVOID 0.752 0.964 0.992 0.156 0071 0528
A B
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Experiments

» Quantitative Results

Models Scaling Dataset §<1.251 §<125°1t 4<1.25°%t AbsRel| log,;l RMSE]
Adabins - NYUv2 0.771 0.944 0.983 0.159 0.068 0.476
DepthFormer - NYUv2 0.815 0.970 0.993 0.137 0.059 0.408
ZoeDepth-X Image NYUv2 0.857 - - 0.124 - 0.363
ZoeDepth-M12 Image NYUv2 0.864 - - 0.119 - 0.346
ZoeDepth-M12 Image NYUv2, KITTI 0.856 - - 0.123 - 0.356
Linear Fit SUN-RGBD 0.812 0.967 0.993 0.139 0.059 0412
Global NYUv2 0.773 0.945 0.984 0.154 0.071 0.482
DPT Image NYUv2,KITTI 0.778 0.953 0.984 0.153 0.068 0.478
RSA (Ours) NYUv2,KITTI 0.781 0.953 0.986 0.152 0.066 0.463
RSA (Ours) | NYUvZ,KITTL.VOID 0.788 0.953 0.986 0.150 0.065 0.458
Linear Fit SUN-RGBD 0.632 0.912 0.971 0.241 0.102 1.132
Global NYUv2 0.572 0.889 0.956 0.297 0.132 1.464
MiDas Image NYUv2,KITTI 0.594 0.895 0.962 0.275 0.125 1.374
RSA (Ours) NYUv2,KITTI 0.612 0.903 0.964 0.268 0.122 1.302
RSA (Ours) | NYUvZ,KITTLVOID 0.623 0.908 0.968 0.253 0.116 1.223
Linear Fit SUN-RGBD 0.878 0.979 0.995 0.113 0.054 0.332
Global NYUv2 0.534 0.872 0.951 0.313 0.138 1.692
DepthAnything Image NYUv2,KITTL.VOID 0.588 0.892 0.963 0.279 0.126 1.392
RSA (Ours) NYUv2,KITTI 0.621 0.915 0.970 0.238 0.099 1.024
RSA (Ours) | NYUvZ KITTLVOID 0.645 0.927 0.978 0.203 0.095 1.137
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Experiments

* Qualitative Results
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Thank you!
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