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• What is Monocular Depth Estimation?

▪ Monocular depth estimation aims to transform a photographic image into a depth map, 

i.e., evaluate a range value for every pixel

▪ Task arises whenever the 3D structure of scene is needed, and no direct range or stereo 

measurements are available

−Used for 3D reconstruction, autonomous driving etc.

▪ Projecting 3D world to 2D image is geometrically ill-posed problem, solvable by prior 

knowledge of scene

Background



4

• What is Metric Depth?

▪ Shows accurate depth to any point given in an image

▪ These days most models produce inverse relative depth, following the work of MiDaS

−Foundation models are trained on many different datasets

−Used to gain great zero-shot accuracy

҉ Not every used dataset features necessary metadata for accurate metric depth

҉ Unable to produce accurate metric depth, therefore normalize on scale from 0-255

−Metric depth necessary for most downstream tasks though

▪ Different ways to earn metric depth

−Previous works focused on fine-tuning a MDE model with a certain dataset to earn metric data 

for this environment

−Other works try to guess global scale and shift and apply them to all images

Background
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• How do CLIP-based depth models work?

▪ Most works function by using so called depth bins

−Contain a set depth value for a certain type of scene 

҉ If the input class from the text prompt aligns with the given bin, it is set to that depth 

value

−Either human-set or can also be learned on their own

−Due to this still has many restrictions and does not perform as well as other MDE methods

Background
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• Depth Pro: Sharp Monocular Metric Depth in Less Than a Second (arXiv 2024)
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• Foundation model for zero-shot metric monocular depth estimation

• Motivation

▪ Depth estimators should work zero-shot on any image

−Should not be restricted to certain domain

−Should ideally produce metric depth maps for broad applicability

−Metric depth should be accessible without meta data like camera intrinsics

▪ Depth estimators should operate at high resolution and produce fine-grained depth maps

▪ Should have low latency

−High-resolution images should still be processable

• Fast metric prediction with absolute scale and high boundary tracing 

▪ Produces 2.25-megapixel depth map in 0.3 seconds

Introduction
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• Network architecture

▪ Key idea is to apply ViT on patches at multiple scales

−Results get fused into single high-resolution dense prediction

▪ Employs two ViT encoders for predicting depth

−Patch encoder

− Image encoder

▪ Decoder resembles DPT

▪ Separate ViT and focal length head encoder to predict focal length 

Method
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• Depth prediction network

▪ Patch encoder

−Applied on patches which were extracted at multiple scales

−Allows learning scale-invariant representations, as weights are shared across scales

▪ Image encoder

−Anchors patch predictions in global context

−Applied to whole input image

−Downsampled to base input resolution of chosen encoder backbone (here 384x384)

Method
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• Depth prediction network

▪ Whole network operates at 1536x1536 resolution

−Guarantees sufficient receptive field and constant runtimes for any image

▪ After downsampling to 1536x1536, image is split into patches of 384x384

−Patches overlap to avoid seams

−Yields 25 and 9 patches respectively

−Patches extracted from all scales (35 in total) then concatenated along batch dimension and fed 

into patch encoder

Method
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• Depth prediction network

▪ Yields feature tensor at resolution 24x24 per input patch (features 3-6)

▪ At finest scale, further intermediate features are extracted to capture finer details (1-2)

−Yield another 50 feature patches

▪ Feature patches then get merged into maps

−Maps get fed into DPT decoder

▪ Patch based approach also has advantage of allowing parallelization

Method
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• Training objectives

▪ For each input image 𝐼, network 𝑓, predicts canonical inverse depth image 𝐶 = 𝑓 𝐼

−Canonical inverse depth prioritizes areas close to camera over farther areas or whole scene

− መ𝐶 describes ground-truth canonical inverse depth

▪ Obtain dense metric depth map 𝐷𝑚 by scaling horizontal field of view

−Represented by focal length 𝑓𝑝𝑥 and width 𝑤: 𝐷𝑚 =
𝑓𝑝𝑥

𝑤𝐶

▪ For training on metric datasets, the mean absolute error (𝐿𝑀𝐴𝐸) per pixel 𝑖 is used

−𝐿𝑀𝐴𝐸 መ𝐶, 𝐶 =
1

𝑁
σ1
𝑁 መ𝐶𝑖 − 𝐶𝑖

҉ Pixels with error in top 20% per image get discarded for all real-world datasets

҉ Chosen for robustness in handling potentially corrupted real-word ground truth

Method
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• Training objectives

▪ For non-metric datasets, normalize predictions and GT via mean absolute deviation 

from median

−Further compute errors on first and second derivatives of inverse depth maps

−Multi-scale derivative loss over M scales as 

−𝐿∗,𝑝,𝑀 𝐶, መ𝐶 =
1

𝑀
σ𝑗
𝑀 1

𝑁𝑗
σ
𝑖

𝑁𝑗 ∇∗𝐶𝑖
𝑗
− ∇∗ መ𝐶𝑖

𝑗 𝑝

҉ ∇∗ indicates spatial derivative operator *, such as Laplace (L) or Scharr (S) and 𝑝 the 

error norm

҉ Scales 𝑗 computed by blurring and downsampling inverse depth maps

Method
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• Training curriculum

▪ Based on three observations

−Training on large mix of real-world data and synthetic datasets improves generalization

−Synthetic datasets provide pixel-accurate, high-quality ground truths

҉ Real-world datasets often contain missing areas or mismatched depth

−Predictions get sharper over course of training

▪ Two-stage training curriculum follows these observations

− In first stage aim to learn robust features that allow network to generalize across domains

҉ Train on mix of all labeled data

҉ Minimize 𝐿𝑀𝐴𝐸 on metric datasets and its normalized version of non-metric ones

҉ To steer network towards sharp boundaries, supervise gradients of predictions

҉ Done naively can hinder and optimization

✓Apply scale-and-shift invariant loss on gradients of only the synthetic data

Method
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• Training curriculum

▪ Two-stage training curriculum follows these observations

−Second stage designed to sharpen boundaries and reveal fine details in depth maps

҉ To minimize effect of  inaccurate GT, train in this stage only on synthetic data

҉ Opposed to real data, synthetic data provides high-quality pixel-accurate GTs

҉ Minimize 𝐿𝑀𝐴𝐸 again and supplement it with selection of first- and second-order derivates

• Focal length estimation

▪ Predict horizontal angular field-of-view from separate ViT image encoder

−Small convolutional head ingests frozen features from depth estimation network and task-

specific features

−Uses 𝐿2 training loss

−Gets trained after depth estimation training

▪ Focal length training is separated

−Has benefits, as avoids necessity of balancing depth and focal length training objectives

−Also allows training of focal length head on focal length supervision datasets

Method
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• Evaluation metrics for sharp boundaries

▪ Common MDE benchmarks rarely take boundary sharpness into account

▪ Propose set of metrics specifically for the evaluation of depth boundaries

▪ Key observation: can leverage existing high-quality annotations for matting, saliency or 

segmentation as GT for depth boundaries

−Treat annotations for these tasks as binary maps

−Define foreground/background relationship between object and environment

҉ Only consider pixel around edges in binary maps

−Use pairwise depth ratio of neighboring pixels to define foreground/background relationship

−Occluding contour 𝑐𝑑 derived from depth map 𝑑 as 

҉ 𝑐𝑑 𝑖, 𝑗 =
𝑑(𝑗)

𝑑(𝑖)
> (1 +

𝑡

100
)

✓𝑖, 𝑗 are locations of two neighboring pixels

✓Indicates presence of occluding contour between pixels 𝑖 and 𝑗 if depth differs more 

than t%

Method
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• Evaluation metrics for sharp boundaries

▪ Key observation: can leverage existing high-quality annotations for matting, saliency or 

segmentation as GT for depth boundaries

−Can now compute precision 𝑃 and recall 𝑅 for all neighboring pixel

҉ 𝑃(𝑡)=
σ𝑖,𝑗 ∈𝑁 𝑖 𝑐𝑑 𝑖,𝑗 ⋀𝑐෡𝑑(𝑖,𝑗)

σ𝑖,𝑗 ∈𝑁 𝑖 𝑐𝑑(𝑖,𝑗)
and 𝑅(𝑡)=

σ𝑖,𝑗 ∈𝑁 𝑖 𝑐𝑑 𝑖,𝑗 ⋀𝑐෡𝑑(𝑖,𝑗)

σ𝑖,𝑗 ∈𝑁 𝑖 𝑐෡𝑑(𝑖,𝑗)

҉ Precision and recall are scale-invariant, for experiment report F1 score

҉ Performed weighted averaging of F1 values with thresholds from 𝑡𝑚𝑖𝑛 = 5 and 𝑡𝑚𝑎𝑥 =
25

▪ Does not require any manual edge annotation

−Can use pixelwise ground truth available in synthetic datasets

▪ Given binary mask 𝑏 over image, define presence of 𝑐𝑏 between pixel 𝑖, 𝑗 as

−𝑐𝑏 𝑖, 𝑗 = 𝑏 𝑖 ∧ ¬𝑏(𝑗)

−Can compute recall by replacing occluding contours from depth maps with those from binary 

maps

Method
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• Quantitative results

▪ Zero-shot metric depth accuracy (δ1, higher is better)

▪ Zero-shot boundary accuracy (F1 score and recall, higher is better)

Experiment
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• Quantitative results

▪ Comparison on focal length estimation (δ25%, δ50%, higher is better)

• Qualitative results

Experiment
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• RSA: Resolving Scale Ambiguities in Monocular Depth Estimators through 

Language Descriptions (NeurIPS 2024)
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• First method for metric-scale monocular depth estimation with language

• Recovers metric-scaled depth maps through linear transformation

▪ Based on observation, that certain objects (cars, trees, street signs) are typically found 

or associated with certain types of scenes (e.g. outdoor)

• Takes as input a text caption describing objects present in a scene and outputs 

parameters of linear transformation

▪ Parameters can then be applied globally to a relative depth map to yield a metric-scaled 

prediction 

• Model can be trained on multiple datasets to be used in zero-shot settings

Introduction
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• Consider dataset 𝐷 = 𝐼(𝑛), 𝑡(𝑛), 𝑦∗(𝑛)
𝑛=1

𝑁
with 𝑁 samples synchronized RGB 

images

▪ 𝐼 denotes an image, 𝑦∗ the ground truth depth map and t a text description of the image

▪ Assume access to pretrained monocular depth estimation model ℎ𝜃 to learn parameters 

to predict transformation between relative and metric depth

▪ Given an image, a MDE predicts inverse relative depth 𝑦 ≔ ℎ𝜃(∙)

−Consider global linear transformation through use of language description pretraining to 

recover metric-scale

Method
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• Given a text description t, RSA predicts pair of scalars denoting scale and shift 

parameters of transformation, described as

▪ ෝ𝛼, መ𝛽 = 𝑔𝜓(𝑡)

▪ ො𝛼 describes the guessed scale and መ𝛽 the guessed shift

• Metric depth can now be obtained by

▪ ො𝑦 = 1/( ො𝛼 ∙ 𝑦 + መ𝛽)

Method
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• RSA model

▪ Employs pretrained CLIP text encoder as feature extractor to infer scale and shift

−Text encoder frozen within RSA

▪ First encodes text descriptions into text embeddings and then feed into 5-layer shared 

MLP to project them into k = 256 hidden dimensions

−Followed by two separate sets of 5-layers

҉ One serves as output head 𝜓ෝ𝛼 for scale parameter ො𝛼

҉ Other serve as output head 𝜓෡𝛽 for shift parameter ෠𝛽

▪ Optimizing RSA involves minimizing supervised loss with respect to 𝜓

−𝜓∗ = arg min
𝜓

σ𝑛=1
𝑁 1

𝑀 𝑛
σ𝑥∈Ω𝑀

𝑛 𝑥 | ො𝑦 𝑛 𝑥 − 𝑦∗(𝑛)(𝑥)|

҉ ො𝑦(𝑛) = 1/( ො𝛼(𝑛) ∙ 𝑦(𝑛) + ෠𝛽(𝑛)) is predicted metric-scale depth aligned from relative depth

҉ 𝑥 ∈ Ω denotes an image coordinate

҉ 𝑀denotes binary mask indicating valid coordinates in ground truth depth

Method
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• Text prompt design

▪ Require text descriptions to be paired with each image

▪ Create these descriptions themselves by using different models

−First considered structured text, using a certain template

҉ Use MaskDINO to extract significant objects and background in the image

҉ For an input image, segmentation model returns set of B object and background instances 

𝑛(𝑖), 𝑐(𝑖)
𝑖=1

𝐵
, where 𝑐(𝑖) denotes class of object and 𝑛(𝑖) the count of this object

҉ Then instances structured to caption: “An image with 𝑛(1) 𝑐(1), 𝑛(2), 𝑐(2), …𝑛(𝐵), 𝑐(𝐵).”

҉ Shuffle order of instances to produce five different of these prompts

−Then consider natural text, which does not follow a certain template

҉ Use two visual question-answering models for this

҉ Each model provides 5 prompts each

−During training, in each iteration a random of these in total 15 prompts gets chosen

Method



26

• Quantitative Results

Experiments
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• Quantitative Results

Experiments
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• Qualitative Results

Experiments
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Thank you!
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