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Background

« State Space Models (SSMs)

A

- SSMs are used to describe state representations and predict future states based on input
- At time t, SSMs:

-Map input sequence x(t): e.g., moved left and down in a maze
- Generate latent state representation A(t): e.g., distance to exit, x/y coordinates

- Derive predicted output sequence y(t): e.g., move left again to reach the exit sooner

- SSMs handle continuous sequences as input and predict continuous output sequences

- Assumption: Dynamic systems can be predicted using state /(t) through two core
equations

- By solving these equations, SSMs aim to uncover statistical principles to predict the
system's state based on observed data

- The goal of SSMs is to find the state representation 4(t) that allows transitioning from

Input Output

input to output sequences effectively coaience)  SSM EEEDEE)

state equation

h'(t) = Ah(t) + Bx(t)

r\J output equation —p r\j

y(t) = Ch(t) + Dx(t)

(t) (t)
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Contribution

 Theoretical Framework

- Established the Structured State Space Duality (SSD) framework

- Connects structured state-space models (SSMs) with attention mechanisms
 Architecture Design

- Introduced the Mamba-2 architecture

- Integrates SSD into the core design, making the model faster and more efficient
 Algorithm Development

- Developed new algorithms for SSMs

- These algorithms improve the speed of Mamba-2 by 2-8 times compared to its
predecessor
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Why Mamba-2?
 Challenges in MAMBA:

- Challenge 1: Complexity in Understanding
-SSM vs. Attention Mechanism:

:': Mamba effectively uses SSMs for sequence modeling

:'= However, certain aspects remain where the attention mechanism demonstrates superior
performance

-Key Questions:
:=\What are the theoretical links between SSMs and attention?

;= Can these two approaches be integrated?
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Why Mamba-2?
 Challenges in MAMBA:
- Challenge 2: Efficiency

- Computational Efficiency:

;= Hardware-aware algorithms in Mamba are less efficient than attention mechanisms
-Hardware Optimization:

' Modern GPUs and TPUs are optimized for matrix operations

:': There is a need to improve computational efficiency during training
-Key Question:

:': Can Mamba be adapted to effectively use matrix multiplication?
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SSD Framework

« State Space Duality (SSD) Framework

- This framework establishes a connection between structured State-Space Models
(SSMs) and attention mechanisms, particularly those used in Transformers

« Core Concept: Structured Matrices

- The SSD framework leverages the concept of structured matrices

- Structured matrices are a type of matrix with subquadratic parameters and efficient
multiplication algorithms

- These matrices serve as the bridge linking SSMs and attention mechanisms

Efficient
Algorithms

Sec. GT

Structured
Matrices

Semiseparable Structured Masked
Matrices /'sec. o 2\ Attention (SMA)

3 S
State Space Sec.5 )
—
Models (SSM) Attention

State Space
Duality (SSD)

lSec 7

Mamba-2
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SSD Framework

« Quadratic Mode

- Matrix Multiplication

-SSM is represented as a T x T matrix

-Like the attention mechanism’s Query, Key, and Value matrices

-The SSM operation can be represented as a matrix multiplication
s:y =8SSM(A,B,C)(x) = Mx

-Here, M;; = CjTAj:iBl-, where A;,; is a product of state matrices from index i to j

-The matrix M can be decomposed and rewritten in a form resembling attention
2:M = Lo (CBT)

-L is a structured matrix derived from A, specifically a 1-Semiseparable (1-SS) matrix

- Like the attention mechanism’s Query, Key, and Value matrices

- Analogies

- SSM’s state matrix A = attention’s pre-softmax score matrix

-SSM’s matrices B and C ~ attention’s Value matrix

-Qutput Y is computed similarly to attention
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SSD Framework

e Linear Mode

- Defines the state-space model (SSM) as a mapping from xeR” to yeR”
- The state update is given by h, = A,h;_; + B,x, and the output is y, = CI h,

- Selective SSM allows the parameters A, B, and C to vary over time, enabling dynamic
adaptation

- Structured SSM enforces the matrix A to be diagonal for more efficient computation
- This structure is also applied in models like S6
- SSD Refinement:

- Further simplifies A to a scalar times identity matrix, where all diagonal elements are equal

-This allows A to be represented by its shape and a single scalar value, enhancing
computational efficiency
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SSD Framework

« SSD vs. State Space Models: Key Differences from Mamba 1 to Mamba 2

- Change in Matrix Structure

- Transition from diagonal A to scalar-times-identity structure A

- This structure shares recurrent dynamics across all elements of the state space
- Channels and Heads

-Mamba 1: P=1 (single channel)

-Mamba 2: P>1, enabling shared dynamics across multiple channels via P heads
- From Multiple Recurrences to Single Shared Recurrence

-Mamba 1: Individual scalar recurrence for each of PxN elements

-Mamba 2: A single shared recurrence, improving computational efficiency
- Interpretation in Dual (Quadratic) Attention Form

-Enables matrix operations, making the model computationally efficient

- Concern about potential performance issues is mitigated by the model's selectivity—only
relevant information is propagated, ensuring overall effectiveness
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SSD Framework

« Efficiency: the SSD Mode
- Which Mode to Use?

-During inference, using SSM directly is ideal since there is no trade-off

-However, during training, it’s preferable to consider both computation time and hardware
efficiency. Thus, matrix multiplication is more desirable for faster processing
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SSD Framework

« Efficiency: the SSD Mode

- Block Decomposition

- A specific structured matrix is decomposed to define the SSD “token mixing” sequence
transformation

-This decomposition is essential for the sequence transformation in SSD
- Chunkwise Algorithm
-The sequence is divided into segments, with quadratic attention computed on each segment

-The results are then adjusted by passing SSM states between segments, ensuring that the final
outcome reflects the state transitions across the entire sequence

Attention SSM SSD

State size T N N
Training FLOPs T2N TN? TN?
Inference FLOPs TN N2 N2
(Naive) memory T2 N2 TN
Matrix multiplication v/ v
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Mamba-2 Architecture

 Simplification of Mamba Block

- Sequential linear projections removed

- SSM parameters A, B, C generated at the start of the block
« Normalization Layer

- Additional normalization layer added for stability

- Inspired by NormFormer (Shleifer et al., 2021)

* Projections B and C

- Single head shared across X heads

- Analogous to Multi-Value Attention (MVA)

i
¥
SSMm
A x| |:| Linear projection
: Sequence transformation
0 © R
O Nonlinearity (activation,
m normalization, multiplication)
1
Sequential Mamba Block Parallel Mamba Block

g ABTNE-D Mamba-2 Architecture VDS
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Experiments

« Scaling Laws on the Pile dataset
- Model Size

-The experiment involves models with sizes ranging from approximately 125 million (=125M)

to 1.3 billion (=1.3B) parameters
-The models were trained on the Pile dataset

- Mamba-2 Performance
-Mamba-2 matches or exceeds the performance of the original Mamba model and a strong
"Transformer++" recipe

- Compared to the baseline Transformer, Mamba-2 is Pareto dominant in terms of performance

(perplexity), theoretical FLOPs, and actual wall-clock time
Scaling Laws on The Pile (Sequence Length 8192)

Transformer++
’E s Mamba
5 10" 4 == Mamba-2
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Experiments
 Synthetic Language Modeling : MQAR

- Associative Recall Challenge

- Associative recall tasks require SSMs to store and retrieve all relevant information within their
recurrent state

- SSD Layer and Architecture Enhancement

-The inclusion of the SSD layer and an improved architecture in Mamba-2 supports much
larger state sizes

- Mamba-2 Performance

-Mamba-2 significantly outperforms both Mamba-1 and vanilla attention in these tasks

Sequence Lenagth: 256 Sequence Length: 512 Sequence Length: 1024
100 | t—s —
Il _; — ~
075 "/ —8— Aftention
E ' * —— Based
2 0.50 & ,.-'"} - —a— Mamba (N=16}
= ' / —a— Mamba-2 (N=16)
0.25 7 // —8— Mamba-2 (N=564)
f e —8— Marmba-2 (N=256)
000 * b + " .
32 fad 128 256 32 fd 128 256 32 fd 128 256
Model dimension Maodel dimensian Model dimensian
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Contribution

« Built on State Space Models (SSMs) for efficient visual representation learning
» Cross-Scan Module (CSM)

- Introduced the Cross-Scan Module (CSM) to address the direction-sensitive problem in
vision data

- Enables 1D selective scanning in 2D image space
- Achieves global receptive fields without increasing computational complexity
« Efficient Computational Design

- VMamba reduces the quadratic complexity of attention computation to linear

complexity
- Utilizes a four-way scanning strategy to ensure comprehensive information integration
across the image //J,
/ ﬂﬂﬂﬂﬂﬂ »
R AW hda Performance comp;‘;nin;gmr‘;ngn ImageNet-1K VDS
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2D-Selective-Scan

 2D-Selective-Scan(SS2D) is proposed to adapt the S6 model to vision data

- It incorporates global receptive fields, dynamic weights, and linear computational

complexity
- Addresses challenges posed by the non-sequential and spatial nature of vision data

- SS2D involves three steps:
- Cross-scan, selective scanning with S6 blocks, and cross-merge

» Cross-Scan Module (CSM)
- CSM handles the unfolding of image patches into sequences along four distinct paths

- CSM ensures each pixel integrates information from all other pixels in different
directions Dl‘!ﬁDﬂ T
ENNE BEE
MEE
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Nl

Attention
@ 0(N?) complexity
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2D-Selective-Scan

« Selective Scanning Process

- Image patches are processed by separate S6 blocks in parallel

- Outputs from the scanning process are merged to reconstruct the 2D feature map (i.e.,

Cross-merge)
- This process facilitates the establishment of global receptive fields

« Advantages of SS2D
- Maintains the advantages of the S6 model in vision tasks

- Ensures effective context-aware data modeling while preserving linear computational

efficiency

- Overcomes the limitations of existing methods in capturing long-range dependencies in

2D vision data
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The VMamba Model Family

e Qverview of VMamba Architecture

- VMamba is developed in three scales:

-VMamba-Tiny (T), VMamba-Small (S), and VMamba-Base (B)

- The architecture is designed to process input images through a series of stages, each
producing hierarchical representations with decreasing resolutions

- The model begins with a stem module that partitions the input image into patches,

followed by VSS blocks at each stage

(b) Mamba Black ! (c) The Vanilla VSS Block ! (d) VSS Block

R 4B CHBE D Illustration of network architectures
6 SOGANG UNIVERSITY 21
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The VMamba Model Family

« Vanilla VSS Block

- The Vanilla VVSS Block serves as the core module in building VMamba

- It is a residual network with a skip connection, consisting of two branches:
-One branch uses a 3x3 depth-wise convolution layer for feature extraction

-The other branch includes a linear mapping followed by an activation layer, responsible for
computing the gating signal

- The SS2D module is integrated to adapt selective scanning to 2D vision data, replacing
the S6 module found in the original Mamba block

e Differences from Vision Transformers

- Unlike Vision Transformer (ViT) blocks, the Vanilla VSS Block does not use position
embedding bias

- The architecture of VMamba is shallower than typical ViT blocks, allowing for more
blocks to be stacked within a similar depth budget

S
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Experiments

 Image Classification on ImageNet-1K

A

- Settings
-VMamba models (Tiny, Small, Base) were trained from scratch for 300 epochs
-Used AdamW optimizer with a batch size of 1024

- Results

-VMamba-T achieved 82.5% top-1 accuracy, outperforming other models like RegNetY-4G,
DeiT-S, and Swin-T

-VMamba-S and VMamba-B also demonstrated superior performance compared to their

Image ., Train ImageNet
CO u n te r parts Method size #Param. FLOPs Throughput Throughput | top-1 acc.
RegNetY-4G [4T] 2242 21M 4.0G - - 80.0
RegNetY-8G [41] 2242 39M 8.0G — - 81.7
RegNetY-16G [41] 2242 84M 16.0G - - 82.9
EffNet-B3 [47] 300? 12M 1.8G - - 81.6
EffNet-B4 [47] 3802 19M 4.2G — - 82.9
EffNet-B5 [47] 4562 30M 9.9G - - 83.6
EffNet-B6 [47] 5282 43M  19.0G - - 84.0
ViT-B/16 [12] 3842 86M 55.4G — - 719
ViT-L/16 [12] 3842 307M  190.7G - - 76.5
DeiT-S [50] 2242 22M 4.6G 1759 2397 79.8
DeiT-B [50] 2242 86M 17.5G 500 1024 81.8
DeiT-B [50] 3842 86M 55.4G 498 344 83.1
ConvNeXt-T [33] 2242 29M 4.5G 1189 701 82.1
ConvNeXt-S [33] 2242 50M 8.7G 682 444 83.1
ConvNeXt-B [33] 2242 89M 15.4G 435 334 83.8
HiViT-T [64] 2242 19M 4.6G 1391 1300 82.1
HiViIT-S [64] 2242 38M 9.1G 711 697 83.5
HiViT-B [64] 2242 66M 15.9G 456 541 83.8
Swin-T [32]] 2242 28M 4.6G 1247 985 81.3
Swin-S [32]] 2242 50M 8.7G 719 640 83.0
Swin-B [32]] 2242 88M 15.4G 457 494 835
SAND-ConvNeXt-T [40] 2242 30M - 684 331 82.2
S4ND-ViT-B [40] 2242 89M - 404 340 80.4
ViM-S [68] 2242 26M - 811 232F 80.5
VMamba-T 2242 3IM 4.9G 1335 464 825
VMamba-S 2242 50M 8.7G 874 313 83.6
VMamba-B 2242 89M 15.4G 645 246 839
YT 3.';.3.. Performance comparison on ImageNet-1K VDS
LAB
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Experiments
 Object Detection on COCO

A

- Settings
-Used the Mask-RCNN detector with fine-tuning for 12 and 36 epochs

-The VMamba models were evaluated on object detection (APb) and instance segmentation
(APm)

- Results

-VMamba-T/S/B models showed significant improvements over Swin and ConvNeXt models
in both object detection and instance segmentation

-With the 12-epoch schedule, VMamba-T achieved 47.4% APb, outperforming Swin-T by
47% and ConVNeXt_T by 32% Backbone | AP" A:‘ETSk;;TNA:"m:‘::::lE APY | #param. FLOPs

ResNet-50 382 588 414 | 347 557 372 44M 260G

Swin-T 427 652 468 | 393 622 422 48M 267G
ConvNeXt-T | 442 66.6 483 | 40.1 633 428 48M 262G
PVTv2-B2 453 671 4906 | 412 642 444 45M 309G
ViT-Adapter-S | 44.7 658 483 | 399 625 428 48M 403G
VMamba-T | 474 695 520 | 427 663 460 50M 270G

ResNet-101 382 588 414 | 347 557 372 63M 336G
Swin-§ 448 666 489 | 409 632 442 69M 354G
ConvNeXt-S | 454 679 500 | 418 652 451 TOM 348G

PVTv2-B3 470 68.1 517 | 425 657 457 65M 397G
VMamba-§ | 487 700 534 | 437 673 470 64M 357G

Swin-B 46.9 - - 423 - - 107M 496G
ConvNeXt-B | 47.0 694 517 | 427 663 46.0 108M 486G
PVTv2-B5 474 686 519 | 425 657 460 102M 557G
ViT-Adapter-B | 47.0 682 514 | 418 651 449 102M 557G
VMamba-B | 492 709 539 | 439 677 476 108M 485G

Mask R-CNN 3x MS schedule

Swin-T 46.0 68.1 503 | 416 651 449 48M 267G
ConvNeXt-T | 46.2 679 508 | 41.7 650 449 48M 262G
PVTv2-B2 47.8 697 526 | 431 668 467 45M 309G
ViT-Adapter-S | 48.2 69.7 525 | 428 66.4 459 48M 403G
VMamba-T | 489 706 536 | 437 677 468 50M 270G

Swin-§ 482 698 528 | 432 670 461 69M 354G
ConvNeXt-8 | 47.9 70.0 527 | 429 669 462 T0M 348G
PVTv2-B3 484 698 533 | 432 609 467 65M 397G
VMamba-$ 499 709 547 | 442 682 477 TOM 384G

AR CTH Z}J;.D.. Results of object detection and instance segmentation on COCO dataset VDS
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Experiments

« Semantic Segmentation on ADE20K
- Settings
-UperHead was constructed on top of VMamba models, fine-tuned for 160k iterations
- Experiments included both single-scale (SS) and multi-scale (MS) testing
- Results

-VMamba-T achieved 48.3% mloU (SS) and 48.6% mloU (MS), outperforming ResNet, DeiT,
Swin, and ConvNeXt

-VMamba-S and VMamba-B similarly outperformed their respective benchmarks

method | crop size | mloU (SS) mloU (MS) | #param. FLOPs
ResNet-50 5122 42.1 428 67M 953G
DeiT-S + MLN 5122 43.8 45.1 58M 1217G
Swin-T 5122 44 .4 45.8 60M 945G
ConvNeXt-T 5122 46.0 46.7 60M 939G
VMamba-T 5122 48.3 48.6 62M 948G
ResNet-101 5122 429 44.0 85M 1030G
DeiT-B + MLN 5122 45.5 47.2 144M 2007G
Swin-S 5122 47.6 495 8IM 1039G
ConvNeXt-S 5122 48.7 49.6 82M 1027G
VMamba-S 5122 50.6 51.2 82M 1039G
Swin-B 5122 48.1 497 121M 1188G
ConvNeXt-B 5122 49.1 499 122M 1170G
VMamba-B 5122 51.0 51.6 122M 1170G

R 4170 &; - Results of semantic segmentation on ADE20K using UperNet VDS
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Experiments

« Analytical Experiments

- Effective Receptive Field (ERF)
-VMamba demonstrated a global ERF, unlike CNN-based models, which showed local ERFs

-VMamba’s ERF coverage expanded from local to global during training, contributing to better
Image perception
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Experiments

« Analytical Experiments

- Computational Efficiency with Increasing Resolutions

-VMamba maintained stable performance across different input resolutions, with linear growth
in computational complexity

-Showed better scalability compared to models like Swin and ResNet with increasing input
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Illustration of the change in (a) classification accuracy and (b) FLOPs with progressively larger test image resolutions
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Experiments

 Diagnostic Study on Selective Scan Patterns

- Compared different scanning methods (Unidi-Scan, Bidi-Scan, Cascade-Scan) with the
Cross-Scan Module (CSM)

- CSM demonstrated superior data modeling capacity and stability, with higher
classification accuracy and better computational efficiency

Unidi-Scan ! Cascade-Scan Row and Col

|
|
I
I
,,,,,,,,,,,,,,,,,

_________________

Ilustration of different scanning methods for selective scan

Train ImageNet
Method ‘ #Param. FLOPs Throughput Throughput. | top-1 acc.
Unidi-Scan 30.70 4.86 1342 464 82.2
Bidi-Scan 30.70  4.86 1344 465 748t
Cascade-Scan | 30.70  4.86 817 253 -
CSM | 3070  4.86 1343 464 | 825

R PRI &;.D. Performance comparison of different scanning approaches | VDS |
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