2024 여름 세미나

Hand Pose Estimation

Sogang University

Vision & Display Systems Lab, Dept. of Electronic Engineering

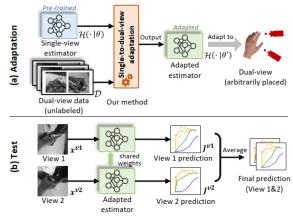
Outline

• Ruicong Liu, Takehiko Ohkawa, et al. "S2DHand: Single-to-Dual-View Adaptation for Egocentric 3D Hand Pose Estiation." CVPR, 2024

• Zicong Fan, Maria Parelli, et al. "HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and Objects from Video." CVPR, 2024

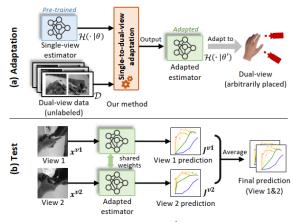
S2D Hand: Single-to-Dual-View Adaptation for Egocentric 3D Hand Pose Estimation

- Abstract
 - Single view image만으로 hand pose estimation을 수행하는 것에는 accuracy 측면에서 한계점이 존재
 - -하나의 시점(view)를 추가하여 더 정확하게 hand pose estimation을 수행하고자 함
 - 기존 multi-view method들의 문제점
 - -Training 과정에서 image에 대한 multi-view annotation이 필요
 - -Test 과정에서 camera parameter가 달라지면 모델을 적용할 수 없음
 - 본 논문은 pretrained 된 single-view estimator를 dual view로 적응시키는 새로운 방법으로 S2DHand를 제안

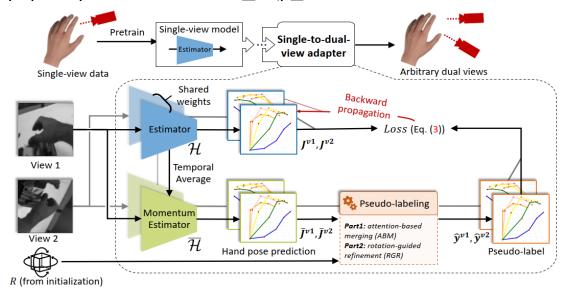


<S2DHand□ pipeline>

- Introduction
 - 기존의 pretrained된 single-view estimator를 baseline으로 사용
 - -본 논문에서는 $DetNet^{1)}$ 을 사용
 - Single-view estimator는 adaptation 과정을 거쳐 adapted estimator로 조정
 - -동일한 이미지에 대해 서로 다른 시점의 dual view input pair를 통해 학습을 진행
 - Testing 과정에서 adapted estimator는 서로 다른 view에 대한 joint prediction을 생성
 - 이는 이후에 combined되어 최종 output을 생성



- Proposed Method
 - Initialization step
 - -Initialization의 목적은 두 시점 간의 rotation matrix R을 추정하기 위함
 - ※R은 두 카메라 좌표계를 맞추어 주는데 필요
 - -Unlabeled dual-view data $D = \{x_i^{v_1}, x_i^{v_2}|_{i=1}^N\}$ 를 single-view estimator H에 입력하여 joints (J^{v_1}, J^{v_2}) 를 생성
 - 이를 이용하여 초기 rotation matrix R을 계산



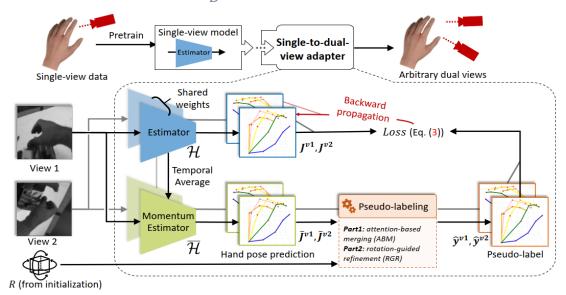
- Proposed Method
 - Initialization step

$$-R(0) = \frac{1}{N} \sum_{i=1}^{N} rot(J_i^{v1}, J_i^{v2})$$

☆ rot함수는 두 3D joints 로부터 3*3 rotation matrix를 생성

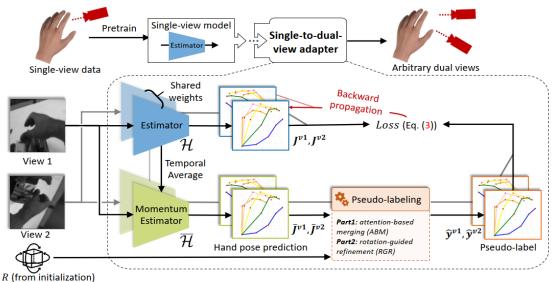
-Rotation matrix는 학습을 진행함에 따라 momentum estimator의 영향을 받아 update

$$R^{(T)} = \eta_R R^{(T-1)} + (1 - \eta_R) \cdot \frac{1}{R} \sum_{i=1}^{R} rot(\bar{J}_i^{v1}, \bar{J}_i^{v2})$$



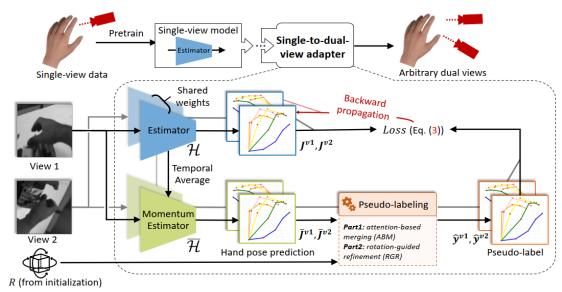
<S2DHand의 전체적인 구조>

- Proposed Method
 - Single-to-dual-view adaptation
 - -S2DHand architecture는 baseline single-view model $\mathcal{H}(\cdot | \theta)$ 과 그것의 momentum version $\bar{\mathcal{H}}(\cdot | \bar{\theta})$ 으로 구성
 - $-\bar{\mathcal{H}}$ 의 parameter $\bar{\theta}$ 는 temporal moving average를 통해 update



<S2DHand의 전체적인 구조>

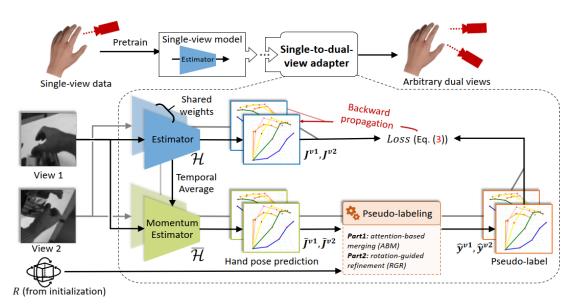
- Proposed Method
 - Single-to-dual-view adaptation
 - -Momentum estimator의 목적은 pseudo-labels를 생성하여 기존 single view estimator H를 학습시키기 위함
 - $-D = \{x_i^{v_1}, x_i^{v_2}|_{i=1}^N\}$ 를 momentum estimator \bar{H} 에 입력하여 joints $(\bar{J}^{v_1}, \bar{J}^{v_2})$ 를 생성



Proposed Method

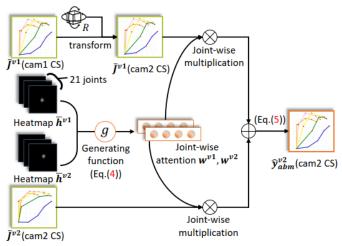
- Single-to-dual-view adaptation
 - -Joints $(\bar{J}^{v1}, \bar{J}^{v2})$ 는 pseudo-labeling module을 통해 pseudo-label $(\hat{y}^{v1}, \hat{y}^{v2})$ 로 출력
 - -기존 single-view estimator가 추정한 (J^{v1},J^{v2}) 와의 loss를 최소화하는 방향으로 학습을 진행

$$-\mathcal{L} = \|J^{v1} - \hat{y}^{v1}\|_2 + \|J^{v2} - \hat{y}^{v2}\|_2$$



SOGANG UNIVERSITY

- Proposed Method
 - Pseudo-labeling: attention-based merging
 - -두 시점에서 예측된 손의 3D pose는 같은 좌표계로 변환하였을 때, 동일해야 함
 - -Pseudo-label 계산 시, 단순히 $(R\bar{J}^{v1} + \bar{J}^{v2})/2$ 로 계산을 하면 occlusion을 고려하지 못함
 - -각 joints의 prediction confidence를 나타내는 attention weight ω 를 계산
 - ; Momentum estimator $ar{H}$ 로부터 생성된 2D heatmap $ar{h}$ 에서 계산
 - #Heatmap의 각 픽셀은 해당 joint가 위치에 존재할 확률을 나타냄



<Attention-based merging □ | pipeline>

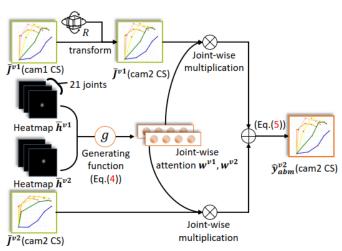
- Proposed Method
 - Pseudo-labeling: attention-based merging

$$-\omega_j^{v} = \frac{\beta \max(h_j^{v})}{\sum_{v \in \{v1, v2\}} \beta \max(h_j^{v})}$$

-Attention weight를 사용하여 두 view의 prediction을 결합해서 pseudo-label 생성

$$\hat{y}_{abm}^{v1} = w^{v1} \bar{J}^{v1} + w^{v2} R^T \bar{J}^{v2}$$

$$\hat{y}_{abm}^{v2} = w^{v1}R\bar{J}^{v1} + w^{v2}\bar{J}^{v2}$$



<Attention-based merging | pipeline>

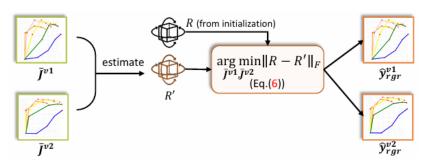
- Proposed Method
 - Pseudo-labeling: Rotation-guided Refinement
 - -Single-to-dual view adaptation이 완료된 후에도 rotation matrix는 초기값인 R과 동일해야 함
 - -Momentum estimator 로부터 생성된 3D joints $(\bar{J}^{v1}, \bar{J}^{v2})$ 을 통해 rotation matrix 계산

$$\mathbf{g}(\mathbf{R}' = rot(\bar{J}^{v1}, \bar{J}^{v2}))$$

-R과 R'의 차이가 최소가 되게 하는 방향으로 학습을 진행

$$\hat{y}_{rgr}^{v1}, \hat{y}_{rgr}^{v1} = \frac{argmin}{\bar{I}^{v1}, \bar{I}^{v2}} ||R - rot(\bar{I}^{v1}, \bar{I}^{v2})||_F$$

-최종 pseudo-label $\hat{y} = \alpha \hat{y}_{abm} + (1 - \alpha)\hat{y}_{rgr}$

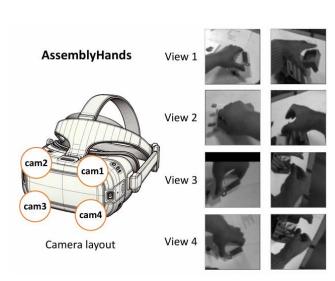


Attention-based merging pipeline>

- Experiment
 - 실험 환경
 - -그림과 같은 VR기기 2대를 이용하여 서로 다른 4개의 view를 이용하여 실험을 진행
 - ## Assembly Hands dataset은 두 부분으로 나누어서 Headset1, Headset2로 나누어 사용
 - -Dataset
 - $\Leftrightarrow D_{ah}$: Assembly Hands
 - p_{syn} : GANerated Hands + Rendered Handpose
 - -Evaluation Metrics
 - Mean per joint position error (MPJPE)

✓Mono-M

✓Dual-M



- Experiment
 - Results
 - -In-dataset $(D_{ah} \rightarrow D_{ah})$
 - 🔅 Baseline model이 Assembly Hands로 pretrained 되고, Assembly Hands로 adaptation 진행
 - -Cross-dataset $(D_{syn} \rightarrow D_{ah})$
 - 踪 Baseline model이 synthetic dataset으로 pretrained되고, Assembly Hands로 adaptation 진행
 - -Baseline으로 설정한 DetNet보다 adaptation 과정을 거친 S2DHand가 더 좋은 성능을 보임

Camera pair	Method	In-dataset $(\mathcal{D}_{ah} o \mathcal{D}_{ah})$				Cross-dataset $(\mathcal{D}_{syn} \to \mathcal{D}_{ah})$			
		$\mathcal{D}_{ah} - Hea\overline{dset1}$		\mathcal{D}_{ah} – $Headset2$		$\mathcal{D}_{ah} - H\overline{eadset1}$		$\mathcal{D}_{ah} - Headset2$	
		Mono-M	Dual-M	Mono-M	Dual-M	Mono-M	Dual-M	Mono-M	Dual-M
$cam\ 1,2$	Baseline	43.00	39.20	54.71	52.38	67.93	60.48	70.32	62.26
	S2DHand	31.01 ▼ 27.9%	31.36 ▼ 20.0%	45.52 ▼ 16.8%	45.14 ▼ 13.8%	63.46 ▼ 6.6%	59.32 ▼ 1.9%	70.09 ▼ 0.3%	60.97 ▼ 2.1%
cam 1, 3	Baseline	25.00	23.29	22.59	21.08	57.79	51.42	64.00	60.25
	S2DHand	19.73 ▼ 21.1%	19.92 ▼ 14.5%	17.90 ▼ 20.8%	17.68 ▼ 16.1%	50.84 ▼ 12.0%	47.55 ▼ 7.5%	61.81 ▼ 3.4%	58.34 ▼ 3.2%
cam 1, 4	Baseline	24.90	22.70	16.73	14.91	52.71	46.55	54.32	50.57
	S2DHand	20.88 ▼ 16.1%	20.87 ▼ 8.1%	14.64 ▼ 12.5%	14.29 ▼ 4.2%	46.05 ▼ 12.6%	42.50 ▼ 8.7%	46.59 ▼ 14.2%	45.66 ▼ 9.7%
cam 2, 3	Baseline	17.96	15.23	17.10	15.08	53.36	48.42	52.84	48.84
	S2DHand	14.97 ▼ 16.6%	14.44 ▼ 5.2%	14.42 ▼ 15.7%	14.20 ▼ 5.8%	40.26 ▼ 24.6%	39.32 ▼ 18.8%	43.61 ▼ 17.5%	42.88 ▼ 12.2%
cam 2, 4	Baseline	22.09	19.84	23.24	20.96	59.44	54.32	61.13	57.41
	S2DHand	17.98 ▼ 18.6%	17.75 ▼ 10.5%	18.31 ▼ 21.2%	18.41 ▼ 12.2%	50.59 ▼ 14.9%	49.41 ▼ 9.0%	52.45 ▼ 14.2%	51.48 ▼ 10.3%
cam 3, 4	Baseline	16.83	15.77	19.93	18.08	45.82	42.34	49.84	48.99
	S2DHand	16.36 ▼ 2.8%	15.55 ▼ 1.4%	19.25 ▼ 3.4%	17.80 ▼ 1.5%	39.46 ▼ 13.9%	37.43 ▼ 11.6%	44.04 ▼ 11.6%	42.88 ▼ 12.5%
Overall	Baseline	24.96	22.67	25.72	23.75	56.18	50.59	58.74	54.72
	S2DHand	20.16 ▼ 19.2%	19.98 ▼ 11.9%	21.67 ▼ 15.7%	21.25 ▼ 10.5%	48.44 ▼ 13.8%	45.92 ▼ 9.2%	53.11 ▼ 9.6%	50.37 ▼ 7.9%

- Experiment
 - Results
 - -Cross-dataset setting에서 기존의 다른 adaptation method들과 성능 비교
 - s; ADDA, DAGEN, RegDA, SFDAHPE
 - 더 낮은 에러율을 보이고, adaptation 과정에서 source dataset을 필요로 하지 않는 source-free
 - Source-free: 모델이 source dataset에서 학습된 후, 다른 데이터셋에서도 잘 동작하도록 하는 방법

D D.	$\mathcal{D}_{ah} - Headset1$			$\mathcal{D}_{ah} - Headset2$		
$\mathcal{D}_{syn} o \mathcal{D}_{ah}$	SF	Mono-M	Dual-M	Mono-M	Dual-M	
Source Only		56.18	50.59	58.74	54.72	
Fine-tune*		45.03	38.11	47.75	42.19	
ADDA [36]	X	56.90	48.48	57.87	51.39	
DAGEN [11]	X	55.37	49.72	57.62	53.17	
RegDA [17]	X	51.41	47.85	54.75	51.50	
SFDAHPE [32]	✓	54.06	49.11	57.22	53.39	
S2DHand (Ours)	✓	48.44	45.92	53.11	50.37	

- Experiment
 - Baseline과 비교한 정성적 결과

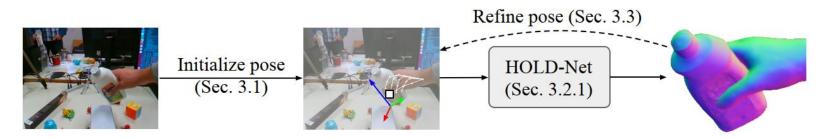


< 기존 모델과 HandOccNet의 정성적 평가>

HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and Objects from Video

- Abstract
 - Video (sequence of frames)에서 3D hand-object estimation을 수행
 - 기존 hand-object interaction을 다루는 논문들의 한계점
 - -Pre-scanned object template 혹은 대량의 3D-object data를 필요로 함
 - #In-the-wild scenarios에서 일반화하기 힘듦
 - 본 논문은 monocular video에서 category-agnostic method를 사용하여 hand-object interaction을 reconstruct하는 HOLD를 제안

- Proposed Method
 - Off-the-shelf estimator를 이용하여 hand와 object의 pose를 출력
 - -Hand pose estimation으로는 METRO¹⁾ 모델 사용
 - -Object pose estimation으로는 HLoc²⁾ 를 사용하여 structure-from-motion (SFM) 수행
 - 이를 통해 HOLD-Net을 적은 epoch으로 학습
 - HOLD-Net의 결과로 출력된 shape을 바탕으로 hand-object interaction constraints를 추가하여 pose를 refine
 - Refine된 pose를 이용하여 HOLD-Net을 fully train



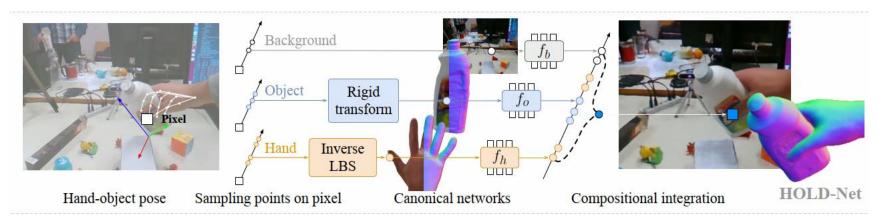
<HOLD ○ | mechanism>

Proposed Method

- Hand Model
 - -Hand Model을 하나의 network로 정의
 - -METRO¹⁾ 모델을 사용해서 hand poses θ , shape β , global rotation R_h , translation t_h 를 얻음
 - -Observation space의 hand points(x')들을 canonical space(x)로 변환하기 위해 Inverse Linear Blend Skinning(Inverse LBS)을 적용

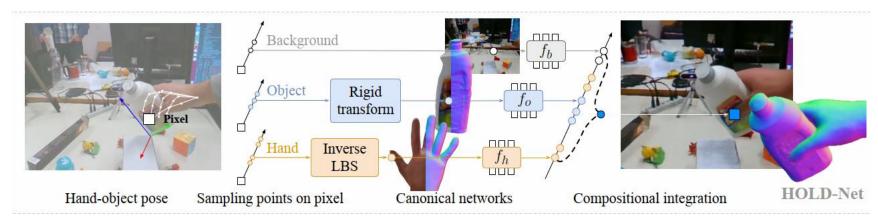
$$f(x) = (\sum_{i=1}^{nb} w_i(x') \cdot B_i)^{-1} x'$$

 $\checkmark B_i = bone transformation, w_i(x') = skinning weights$



- Proposed Method
 - Hand Model
 - 여기서 손의 canonical point x를 MLP (f_h) 에 입력하여 손 표면과의 signed distance(d)와 color(c)를 추정

$$f_h(x) = (d, c)$$



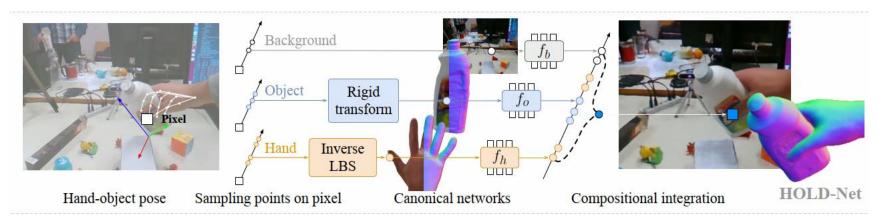
Proposed Method

- Object Model
 - $-HLoc^{1)}$ 모델을 사용해서 object scale s, rotation R_o , translation t_o 를 얻음
 - -Object model은 observation space에서 canonical space로 변환할 때 Rigid transform을 이용 $(sR_0)^{-1} \cdot (x' t_0)$

-Hand model과 마찬가지로 canonical point x를 MLP (f_o) 에 입력하여 distance와 color를 추정

$$f_0(x, z_0) = (d, c)$$

 $\sqrt{z_o}$ 는 물체의 occlusion이나 shadow를 표현하기 위한 parameter



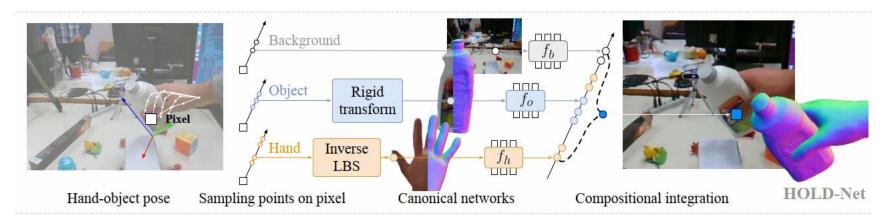
- Proposed Method
 - Compositional Integration
 - -Hand와 object의 signed distance를 volume rendering을 위한 density σ 로 변환하는데 scaled Laplace 분포의 cumulative distribution function을 사용

$$\mathcal{C}_{F}(r) = \sum_{i=1}^{2n} \tau_{i} c_{i}$$

$$\checkmark \tau_{i} = \exp(-\sum_{j < i} \sigma_{j} \delta_{j}) (1 - \exp(-\sigma_{i} \delta_{i}))$$

$$\mathcal{C}(r) = C_{F}(r) + (1 - M_{F}(r)) C_{B}(r)$$

-Inverse LBS를 통해 canonical space로 변환된 hand model과, rigid transform으로 변환된 object model을 합치는 과정

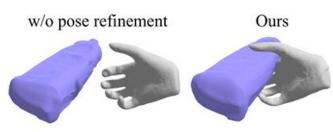


- Proposed Method
 - Pose refinement
 - 초기 pose estimation은 noise가 많아 종종 부정확하기에 refinement가 필요
 - 🔅 아래 그림과 같이 손과 물체 사이의 거리에 오차가 발생
 - -Initial pose를 바탕으로 적은 epoch 동안 training하여 hand와 object의 초기 3D 형상을 추정
 - 이를 바탕으로 contact loss를 최소화하여 hand와 object가 연결되도록 함

$$\mathcal{L}_{contact} = \sum_{i}^{min} \left\| V_{tips}^{i} - V_{o}^{j} \right\|$$

물체와 접촉하는 hand tips의 vertices와 object vertices 사이의 거리를 minimize

-Pose refinement 결과 생성된 refined pose parameter θ 와 $\{\beta, R_h, t_h, R_o, t_o, s\}$ 를 이용하여 HOLD-Net을 fully train



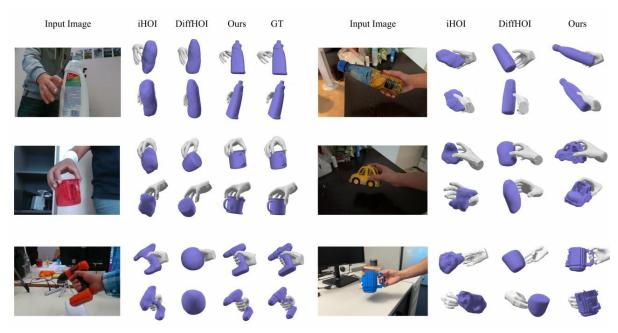
<Pose refinement를 제외한 실험의 정성적 결과>

- Experiments
 - Datasets
 - -HO3D-v3
 - :: In-the-lab dataset
 - ‡ 물체를 손으로 잡고 있는 image dataset
 - Evaluation metrics
 - -Mean per joint position error (MPJPE)
 - -Chamfer distance
 - 襄두 점들의 집합 간의 유사성을 측정하는 지표

	MPJPE [mm] ↓	CD [cm ²]↓	F10 [%] ↑	$CD_h [cm^2] \downarrow$
iHOI [†] [65]	38.4	3.8	75.8	41.7
DiffHOI [66]	32.3	4.3	68.8	43.8
Ours	24.2	0.4	96.5	11.3

<기존 연구들과 HOLD와의 성능차이 비교표>

- Experiments
 - Results
 - -HOLD와 기존의 SOTA hand-object reconstruction methods의 차이 비교
 - 🔆 HOLD가 더 정교한 object shape, hand pose를 추정
 - 🔅 다양한 objects에 대해서도 성공적으로 수행



<기존 연구들과 HOLD와의 정성적 평가 비교>

감사합니다

