2024 여름 세미나

3D Cinemagraphy and Human Image Animation from a Single Image

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Outline

- Background
 - Diffusion Models
 - Latent Diffusion Models Stable Diffusion
- ZHU, Shenhao, et al. "Champ: Controllable and consistent human image animation with 3d parametric guidance." arXiv preprint arXiv:2403.14781, 2024.
- LI, Xingyi, et al. **"3d cinemagraphy from a single image."** In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

Background

- Diffusion Models
 - Gaussian Noise를 반복적인 denoising 과정을 거쳐서 학습된 data의 분포(image)로 변환하는 생성 모델
 - Conditional diffusion models
 - Diffusion model을 class label/text/저해상도 image로 conditioning 가능
 - Diffusion model \hat{x}_{θ} 는 아래와 같은 denoising objective로 학습

 $\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},t} \left[w_t \| \hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x} \|_2^2 \right]$

- (x, c): data-condition pair, $t \sim U([0,1]), \epsilon \sim N(0, I)$ (Gaussian Noise)
- 직관적으로 diffusion model은 noise가 있는 $z_t \coloneqq \alpha_t x + \sigma_t \epsilon \equiv x \pm denoising$ 하는 것
 - 이 식을 reparameterization trick을 이용하여 ϵ -space에서 ϵ_{θ} 에 대해 squared error loss를 적용
 - 원본 image 자체를 예측하는 문제에서 timestep t에서 t-1로 갈 때 제거할 noise를 예측하는 문제로 전환

Background

1강대하고

SOGANG UNIVERSITY

• Latent Diffusion Models – Stable Diffusion

• 기존 Diffusion Model은 픽셀 값을 직접 예측하고 반복적인 denoising을 통해 이미지를 생성

- Pixel space 상에서 수행하기 때문에 엄청난 연산량을 요구함

• Pixel 값을 직접 예측하지 않고 Auto Encoder를 사용하여 압축된 latent embedding을 예측하도록 변경

- Latent space 상에서 수행하여 더 적은 연산량과 빠른 속도를 얻을 수 있음

Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance CVPR 2024

Abstract

- 현재의 인공지능 기술에서 human image animation을 개선하기 위해 3D human parametric model을 활용한 새로운 방법론을 제안
- 인체의 shape 정렬과 motion 안내를 향상시키기 위해 Latent Diffusion Model의 framework 내에서 SMPL(Skinned Multi-Person Linear) model을 사용
 - SMPL model을 사용하여 신체 shape과 pose의 통합된 표현을 확립함으로써 source video로부터 정교한 인체 기하학 및 동작 특성을 정확하게 포착

- Diffusion Model의 발전
 - 최근 Latent Diffusion 모델의 발전으로 image animation 분야가 크게 진전됨
 - 가상 현실 경험, interactive storytelling, 디지털 콘텐츠 제작에서 활용
- Human image animation
 - Skeleton, semantic maps, dense motion flows 등 인간 고유의 motion guide를 사용함
 - GAN과 Diffusion Model 기반 접근 방식이 주로 사용됨

- 기존 방법의 한계
 - GAN 기반 접근 방식
 - Warping을 사용하여 reference image를 입력 motion에 맞춰 공간적으로 변환함
 - 생성된 영상의 시각적으로 불완전한 영역을 채우고 개선하려고 하지만, motion 적용에 있어 큰 변화를 효과적으로 처리하지 못함
 - 비현실적인 visual artifact와 시간적 일관성 문제가 발생함
 - Diffusion Model 기반 접근 방식
 - Reference image와 다양한 동적인 요소를 외형과 motion의 수준에서 model의 condition으로 활용함
 - CLIP encoding된 visual feature와 Diffusion Model을 결합하여 일반화 문제를 해결함

- 제안한 접근 방식
 - SMPL model 사용
 - Reference image의 3D 기하학을 인코딩하고 source video에서 human motion을 추출함
 - 낮은 차원의 파라미터 공간을 사용하여 shape과 pose를 통합하여 표현함
 - 이를 통해 reference image와 source video의 SMPL 기반 motion sequence 간의 기하학적인 일치가 가능함

Reference Image

Source Video Motion

Output Frame

Key Contributions

- 1. SMPL model과의 통합
 - 1. Reference image와 source video의 3D 기하학적인 일치를 통한 human animation 생성
- 2. Multi-Layer Motion Fusion (MLMF)
 - 1. Self-attention mechanism을 사용하여 shape 및 motion latent representation을 융합
- 3. 실험적 평가
 - 1. Benchmark dataset을 사용한 실험에서 고품질의 human animation 생성 능력 입증
 - 2. In-the-wild dataset에 대해서도 우수한 일반화 능력 확인

- SMPL: A skinned multi-person linear model¹⁾
 - 인간의 신체 형태와 자세에 따른 형태 변화를 더 정확하게 표현할 수 있는 새로운 모델을 제시함

- 다양한 신체의 형태와 자연스러운 자세 변화를 현실적으로 나타낼 수 있음

- 기존의 그래픽 파이프라인과 호환 가능함
- SMPL은 데이터에서 학습된 parameter를 사용하여 신체의 평균 템플릿, blending 가중치, 자세에 의존하는 blending 등을 포함함
 - Pose($\theta \in \mathbb{R}^{24 \times 3 \times 3}$)와 shape($\beta \in \mathbb{R}^{10}$)를 나타내는 저차원 parameter를 기반으로 함
 - 자세에 의존하는 blending은 자세 회전 행렬의 요소들의 linear function으로 표현함
 - 다양한 사람들의 다양한 자세에서 정렬된 3D mesh data를 통해 전체 모델을 훈련함
- 입력 reference image와 source video로부터 3D mesh를 출력하여 image animation 제작에 사용함

- SMPL: A skinned multi-person linear model¹⁾
 - 인간의 외형을 다양하고 자세하게 표현하는 방법
 - 인간의 신체 평균 템플릿이 존재함 (그림의 가장 왼쪽)
 - 3개의 blendshape basis가 정의되어 각각의 linear combination으로 새로운 체형을 표현함

- Skeleton 추출을 위한 DWPose¹⁾
 - ICCV 2023에 등재된 논문으로, 매우 정확하고 표현력 있는 skeleton을 제공함
 - Human motion의 skeleton을 diffusion model의 생성 과정에 추가함으로써, 더 높은 품질의 image animation을 제작할 수 있음
 - Source video의 normal map으로부터 skeleton을 추출함

Normal map

Skeleton output

Normal map

- 기본적인 애니메이션 생성 방식은 Latent Diffusion Model framework를 사용함
 - Latent Diffusion Model과 동일한 3D U-Net 구조를 이용해 제작
 - Latent Diffusion Model(LDM)은 diffusion과 denoising의 두 가지 확률적 과정을 latent space에 통합하는 접근 방식임
 - 초기에는 VAE(Variational Autoencoder)를 사용하여 입력 이미지를 저차원 feature space로 인코딩함 \Rightarrow 입력 이미지를 latent representation $\mathbf{z}_0 = \mathcal{E}(I)$ 로 변환함
 - Diffusion 과정은 z_0 에 Markov process를 적용하여 다양한 noisy latent representation을 생성함

- Denoising 과정에서는 각 timestep t에서 $\mathbf{z}_t \rightarrow \mathbf{z}_{t-1}$ 로의 노이즈 $\epsilon_{\theta}(\mathbf{z}_t, t, c)$ 을 예측함
- 훈련 후 모델은 초기 상태 $z_t \sim \mathcal{N}(0, I)$ 에서 z_0 로 점진적으로 denoising할 수 있음
- Denoising된 \mathbf{z}_0 는 VAE decoder $\mathcal{D}(\cdot)$ 를 사용하여 image space로 다시 디코딩됨

YANG, Zhendong, et al. Effective whole-body pose estimation with two-stages distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. p. 4210-4220.
I) Goel, S., Pavlakos, G., Rajasegaran, J., Kanazawa, A., Malik, J.: Humans in 4d: Reconstructing and tracking humans with transformers. arXiv preprint arXiv:2305.20091 (2023)
Yang, Z., Zeng, A., Yuan, C., Li, Y.: Effective whole-body pose estimation with two-stages distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)

Method

• Multi-layer motion condition – SMPL to guidance condition

2)

- Reference human image I_{ref} 와 motion video sequence frame $I^{1:N}$ 을 입력으로 받으면 기존 framework인 4D-Humans¹⁾를 사용하여 3D human parametric SMPL model H_{ref} 와 $H_m^{1:N}$ 을 얻음
- SMPL mesh를 렌더링하여 2D depth map, normal map, semantic map을 얻음
- DWPose²⁾를 이용해 normal map으로부터 skeleton을 얻음

- Multi-layer motion condition Parametric shape alignment
 - Parametric human SMPL model을 사용하면 reference image의 사람과 motion sequence 사이에서 shape와 pose를 모두 정렬하기 쉬움
 - Reference image I_{ref} 에서 맞춘 SMPL model H_{ref} 과 N-frame motion video $I^{1:N}$ 의 SMPL sequence $H_m^{1:N}$ 가 주어지면, H_{ref} 의 shape $\beta_{ref} \equiv H_m^{1:N}$ 의 pose sequence $\theta_m^{1:N}$ 에 맞춤
 - 이 과정을 통해 source video의 human shape가 reference image의 human shape와 동일해짐

- Multi-layer motion guidance Multi-Layer Motion Fusion (MLMF)
 - Shape alignment 후 depth map, normal map, semantic map을 렌더링하고 skeleton을 추가로 제공함
 - 각 종류의 guidance마다 convolutional layer를 통해 feature를 추출하고 self-attention 모듈을 사용하여 더 정확한 특징을 파악하여 fusion을 수행함
 - 하나의 최종 guidance feature가 완성되어 denoising U-Net의 condition으로 사용됨

- ReferenceNet 및 네트워크 구조
 - ReferenceNet을 통해 생성될 비디오의 캐릭터와 배경을 reference image와 일관되게 유지함
 - ReferenceNet은 denoising U-Net과 동일한 구조임
 - VAE와 CLIP 인코더를 통해 인코딩된 reference image embedding을 입력으로 받아서 생성된 비디오에서 일관된 시각적 품질을 유지함
 - 자연스러운 비디오를 위해 시간 축으로의 temporal attention 모듈을 추가함

- Two-stage training 1st stage
 - 첫 번째 단계에서는 이미지만을 대상으로 학습을 진행하고 motion module은 제외함
 - VAE encoder와 decoder, CLIP image encoder의 가중치를 고정함
 - Guidance encoder, denoising U-Net, ReferenceNet은 학습 중 업데이트함

- Two-stage training 1st stage
 - 첫 번째 단계에서는 이미지만을 대상으로 학습을 진행하고 motion module은 제외함
 - Human video에서 랜덤으로 프레임을 선택하여 reference image로 사용하고, 동일 video에서 또 다른 이미지를 target image로 선택함
 - Target image에서 추출한 multi-layer guidance를 Guidance network에 입력하여 고품질의 animation image를 생성하도록 훈련함

- Two-stage training 2nd stage
 - 두 번째 단계에서는 motion module을 도입하여 모델의 시간적 일관성과 유연성을 강화함
 - Motion module(Temporal-Attention)을 도입하고 AnimateDiff¹⁾의 기존 weight로 초기화함
 - 24 frame으로 구성된 video segment를 입력 데이터로 사용함
 - 첫 번째 단계에서 학습된 Guidance encoder, denoising U-Net, ReferenceNet는 고정함

- Dataset
 - 약 5,000개의 고화질 human video를 온라인에서 수집, 총 100만 frame 이상을 포함함
 - -Bilibili: 2,5407∦ video
 - -Kuaishou: 9207∦ video
 - -Tiktok & Youtube: 1,4387 video
 - -Xiaohongshu: 4307 video
 - 다양한 연령, 인종, 성별의 인물을 포함하며, 전신, 반신, 클로즈업 샷을 포함한 다양한 실내 및 실외 배경에서 촬영함
 - 다양한 춤 스타일을 보여주는 댄서들의 영상을 포함하여 다양한 의상과 움직임을 분석함
 - Test set으로는 Image Animation 분야의 기존 벤치마크와 일치시키기 위해 MagicAnimate¹⁾에서 사용된 동일한 test set를 TikTok 평가에 사용함

• Qualitative Results

• Qualitative Results

• Qualitative Results

- Quantitative Results
 - TikTok dataset에 대해서 기존 모델들에 비해 더 좋은 성능을 보임
 - -LPIPS (Learned Perceptual Image Patch Similarity): 이미지 패치를 pre-trained network에 입력하고, 중간 layer에서 추출된 feature vector 간의 유사성을 측정함
 - -FID-VID (Frechet Inception Distance for Videos): 생성된 video와 실제 video의 Inception network에서 추출된 feature vector의 평균과 공분산 행렬을 비교하여 Frechet 거리를 계산함
 - -FVD (Frechet Video Distance): Video의 프레임을 단일 이미지로 취급하지 않고, 전체 video sequence의 feature vector를 추출하여 Frechet 거리를 계산함

Method	L1 \downarrow	$\mathrm{PSNR}\uparrow$	SSIM \uparrow	$\mathrm{LPIPS}\downarrow$	FID-VID	$\downarrow \text{FVD} \downarrow$
MRAA	3.21E-04	29.39	0.672	0.296	54.47	284.82
DisCo	3.78E-04	29.03	0.668	0.292	59.90	292.80
MagicAnimate	3.13E-04	29.16	0.714	0.239	21.75	179.07
Animate Anyone	-	29.56	0.718	0.285	-	171.9
Ours	3.02E-04	29.84	0.773	0.235	26.14	170.20
Ours*	2.94E-04	29.91	0.802	0.234	21.07	160.82

(*): TikTok dataset에 대해서만 fine-tuning을 진행한 모델

- Quantitative Results
 - 서로 다른 motion guidance에 따른 성능의 영향 비교
 - -w/o. SMPL: 오직 skeleton map만 사용하였을 때
 - -w/o.geo.: geometric information에 해당하는 depth map과 normal map을 제외하였을 때
 - -w/o.skl.: SMPL에서 제공된 depth map, normal map, semantic map만 사용하였을 때
 - SMPL-driven guidance (depth, normal, semantic map)과 skeleton map을 모두 함께 사용하였을 때 가장 좋은 성능을 보임

Method	$L1\downarrow$	PSNR ↑	\uparrow SSIM \uparrow	$\mathrm{LPIPS}\downarrow$	FID-VID	$\downarrow \mathrm{FVD} \downarrow$
Ours (w/o. SMPL)	4.83E-04	28.57	0.672	0.296	30.06	192.34
Ours (w/o. geo.)	4.06E-04	28.78	0.714	0.276	29.75	189.07
Ours (w/o. skl.)	3.76E-04	29.05	0.724	0.264	34.12	184.24
Ours	3.02E-04	29.84	0.773	0.235	26.14	170.20

3D cinemagraphy from a single image CVPR 2023

Abstract

- 단일 이미지로부터 3D cinemagraphy를 생성하는 새로운 기술을 제안
 - 3D cinemagraphy란, 정지된 이미지로부터 시각적인 콘텐츠 animation과 카메라 움직임을 포함하는 3D 효과 video를 생성하는 기술임
- 2D 이미지와 3D 사진 촬영 방법을 단순히 결합하면, 뚜렷한 artifact와 일관성 없는 animation이 발생함
- 이를 해결하기 위해 scene을 3D 공간에서 표현하고 animation 화하는 새로운 방법을 제안

- Cinemagraphy 발전의 배경
 - 스마트폰 카메라의 보급으로 온라인에 많은 사진이 업로드됨
 - YouTube와 TikTok 같은 비디오 공유 플랫폼의 인기가 상승함
 - 사람들은 정적인 이미지보다 동영상을 선호하게 됨
- 제안한 문제점
 - Cinemagraphs는 정적인 카메라를 기반으로 하기 때문에 3D 감각을 제공하지 못함
 - 기존 방법을 단순히 결합하면 visual artifact나 일관성 없는 animation이 발생함
- 제안한 목표
 - 단일 이미지로부터 현실감 있는 scene animation과 카메라 움직임을 포함한 3D cinemagraphy 구현

- 제안한 방법론
 - Scene 표현
 - Feature-based Layered Depth Images (LDIs)로 scene을 표현함
 - LDIs를 feature point cloud로 변환함
 - Scene animation
 - 2D motion을 3D scene flow로 변환하여 animation화함
 - Depth 값 예측을 통해 2D motion을 3D로 전환
 - Hole 문제 해결
 - 3D symmetric animation 기술을 사용하여 point cloud를 양방향으로 이동함
 - 새로운 view를 합성하여 hole이 발생하는 문제를 해결함

Key Contributions

- 1. 새로운 task 제안
 - 1. 단일 이미지로부터 3D Cinemagraphs를 생성하는 새로운 task를 제안함
 - Image animation과 novel view synthesis를 3D 공간에서 공동으로 해결하는 새로운 framework를 제안함
- 2. 3D symmetric animation 기술 설계
 - Point가 전진하면서 발생하는 hole 문제를 해결하기 위한 3D symmetric animation 기술을 설계함
- 3. 유연한 framework
 - 1.사용자 정의 mask와 flow hint를 이용해서 motion estimation을 보강함으로써 제어 가능한
animation을 구현 가능함

- Single-image animation
 - 다양한 방법들이 정지된 이미지를 animation 화하는데 사용됨
 - 일부 연구는 특정 객체를 물리적인 simulation으로 animation 화함
 - Animating Still Landscape Photographs Through Cloud Motion Creation (2015)¹⁾

- 일상적인 이미지에 대해서는 잘 일반화되지 않음

- 다른 연구들은 reference video를 참고하여 정적인 객체에 motion을 부여함
 - 추가적인 video를 입력으로 넣어줘야 하므로, 해당 논문의 목표와 맞지 않음
- 기존의 방법들은 2D space에서 작동하여 카메라 움직임을 생성할 수 없음
- Novel view synthesis
 - 2D 이미지와 해당 카메라 pose를 이용하여 새로운 카메라 view를 렌더링함
 - 최근에는 NeRF, 3D Gaussian Splatting 등이 높은 품질의 결과를 생성함
 - 하지만, 이러한 방법들은 dense views를 입력으로 가정함
 - 단일 이미지 입력을 다루는 방법들도 존재하지만, 일반적으로 정적인 장면을 가정함

- 전체적인 개요
 - 단일 정지 이미지에서 scene animation과 카메라 움직임을 동시에 가능하게 하는 것이 목표임
- Overall pipeline
 - 1. Motion field와 depth map 예측
 - 2. RGBD 입력을 여러 layer로 분리하여 feature LDI 생성
 - 3. Animation화 및 novel view synthesis 수행

- Motion Estimation
 - 기존 optical flow를 사용하려면 최소 한 쌍의 이미지가 필요하므로 단일 이미지에는 불가능함
 - 기존 방법론에 따라서 일정한 속도의 Eulerian flow field를 사용함
 - "Animating pictures with Eulerian motion fields¹)" 논문에서 제안한 Eulerian flow field는 단일 RGB 이미지를 optical flow로 mapping해주는 motion estimator를 사용함
 - Frame t에서 frame t + 1로의 optical flow map: $F_{t \to t+1}(\cdot) = M(\cdot)$

응 여기서 M은 scene의 Eulerian flow field로, 각 pixel이 다음 frame에서 어떻게 움직일지를 알 수 있음

- Motion Estimation
 - Euler integration을 통해 next frame을 얻을 수 있음
 - $-x_{t+1} = x_t + M(x_t)$

☆ *x*_t는 시점 *t*에서의 pixel들의 위치 좌표를 나타냄

- 연속된 frame 사이의 optical flow가 동일하므로, 이 정보를 사용해서 displacement field를 추정함
 - Displacement field: 특정 시간 동안의 각 pixel의 이동 경로(flow)를 나타내는 field

- Motion Estimation
 - $F_{0 \to t}(x_0)$ 를 재귀적 적용을 통해 구하는 방법
 - $F_{0 \to t}(x_0)$ 를 계산하기 위해 이전 시점 t 1까지의 displacement field $F_{0 \to t-1}(x_0)$ 에 현재 frame의 optical flow $M(x_0 + F_{0 \to t-1}(x_0))$ 를 더할 수 있음
 - $= F_{0 \to t}(x_0) = F_{0 \to t-1}(x_0) + M(x_0 + F_{0 \to t-1}(x_0))$
 - 이 방법을 통해 초기 frame부터 특정 시점까지의 각 pixel의 이동 경로를 효율적으로 추적 가능함
 - ☆ 단일 이미지에서 animation을 생성하는 데 중요한 역할을 함

- 3D scene representation
 - 이전의 단일 이미지 animation 방법론들은 대부분 2D space에서 작동해서 카메라 움직임 불가

- 3D space로 전환하여 단일 이미지로부터 장면의 기하학적 구조를 추정함

- Step 1. 깊이 추정
 - DPT(Depth Prediction Transformer)¹⁾를 사용하여 monocular depth estimation을 수행함

응 논문 발표 기준 state-of-the-art monocular depth estimator 임

- 3D scene representation
 - Step 2. LDI(Layered Depth Image) 생성
 - 예측한 depth map을 포함한 RGBD 입력을 depth 불연속성에 따라 여러 layer로 분리함
 - Depth 범위를 여러 간격으로 나눈 후, 각 layer의 color 및 depth 정보를 포함한 LDI 생성
 - End to the set of the
 - LDI image의 각 layer의 가려진 영역을 3D Photo¹⁾의 pretrained inpainting model을 이용해 보완함

• 3D scene representation

SOGANG UNIVERSITY

- Step 3. Feature point cloud 생성
 - 2D feature extraction network를 사용하여 각 inpainted LDI color layer에 대해 2D feature map을 얻음
 - 각 layer를 대응하는 depth 값으로 3D space로 전환하여 feature point cloud \mathcal{P} 를 생성함

 $\exp \mathcal{P} = \{(\boldsymbol{X}_i, \boldsymbol{f}_i)\}$

✓Xi: *i*-th 3D point의 3D 좌표

 $\checkmark f_i: i-\text{th 3D point} \ \square$ feature vector

40

- Point cloud animation & rendering
 - 이제 2D displacement field $F_{0 \rightarrow t}$ 와 3D feature point cloud \mathcal{P} 를 얻었음
 - 2D displacement field를 estimated depth와 함께 3D scene flow로 변환함
 - 3D scene flow를 이용해 시점 t에서의 3D feature point cloud를 얻을 수 있음

 $\sup \mathcal{P}(t) = \{(\boldsymbol{X}_i(t), \boldsymbol{f}_i)\}$

- 하지만 여전히 3D point가 이동하면서 원래 위치에 빈 공간이 발생하는 hole 문제가 생김

☆ 이를 3D symmetric animation을 통해 해결함

- Point cloud animation & rendering
 - 3D symmetric animation
 - Point cloud를 양방향(forward + backward)으로 이동시켜서 서로 보완함
 - ;; Backward field로서 $F_{0 \rightarrow t}$ 대신 $F_{0 \rightarrow t-N}$ 를 사용함
 - Forward displacement field $F_{0 \to t}$ 와 backward displacement field $F_{0 \to t-N}$ 를 각각 사용하여 양방향 point cloud $\mathcal{P}_{f}(t) = \{ (\mathbf{X}_{i}^{f}(t), \mathbf{f}_{i}) \}, \mathcal{P}_{b}(t) = \{ (\mathbf{X}_{i}^{b}(t), \mathbf{f}_{i}) \} \in \mathcal{H}_{i}^{b}$
 - 응 양방향 point cloud를 merge하여 hole이 발생하는 문제를 해결할 수 있음

- Point cloud animation & rendering
 - Neural rendering
 - Camera pose와 intrinsic parameter를 사용하여 양방향 point cloud를 image plane에 투영함
 - 이를 통해 2D feature map F_f 와 F_b , depth map D_f 와 D_b , alpha map α_f 와 α_b 를 얻음
 - 양방향 feature map을 가중치 W_t 를 이용해 합성하여 최종 feature map F_t 를 생성함

$$-\mathbf{W}_t = \frac{(1-\frac{t}{N}) \cdot \boldsymbol{\alpha}_f \cdot e^{-\mathbf{D}_f}}{(1-\frac{t}{N}) \cdot \boldsymbol{\alpha}_f \cdot e^{-\mathbf{D}_f} + \frac{t}{N} \cdot \boldsymbol{\alpha}_b \cdot e^{-\mathbf{D}_b}}$$

- 최종 decoder를 거쳐서 시점 t에서의 novel view를 얻음

• Real-world Photos

Input

• Computer-Generated Imagery

Input

Ours

Ours

Input

Input

Ours

• Paintings

• Synthetic Images Generated by Stable Diffusion

Input

Input

Ours

Input

Ours

1) HOLYNSKI, Aleksander, et al. Animating pictures with eulerian motion fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 5810-5819.

2) Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography using context-aware layered depth inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Experimental Results

- Quantitative Results
 - 단일 이미지로부터 사실적인 parallex 효과를 가진 cinemagraph를 생성하는 기존 task가 없기 때문에 직접적인 비교는 어려움
 - 우수성을 검증하기 위해 몇 가지 baseline을 설정함 → 제안한 방법론의 우수성 확인 가능
 - 2D animation → Novel View Synthesis: Animating pictures with Eulerian motion fields¹⁾를 이용해 2D animation을 수행한 이후 3D Photo²⁾를 이용해 NVS 수행
 - Novel View Synthesis → 2D animation: 3D photo를 사용해 NVS를 수행한 다음 1)을 이용해 각 viewpoint를 animation화
 - ☆ MA(Moving Average): Viewpoint마다 motion field가 달라지므로 이 변동성을 완화하기 위해 사용
 - Naïve Point Cloud Animation: Pixel을 직접 3D 공간으로 투영 후 flow를 이용해 point cloud 이동 및 렌더링

※ 3DSA(3D Symmetric Animation): 위에서 사용한 대칭 기술을 추가하여 baseline을 개선

Method	PSNR ↑	SSIM ↑	LPIPS↓
2D Anim. [19] \rightarrow NVS [52]	21.12	0.633	0.286
NVS [52] \rightarrow 2D Anim. [19]	21.97	0.697	0.276
NVS [52] \rightarrow 2D Anim. [19] + MA	22.47	0.718	0.261
Naive PC Anim.	19.46	0.647	0.243
Naive PC Anim. + 3DSA	20.49	0.660	0.237
Ours	23.33	0.776	0.197

