2023 Summer Seminar

The Quantization of Vision Transformer

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented By Jincheol Yang

Outline

• Intro

- What is quantization?
- Post-training quantization and Quantization-aware training
- CNNs vs ViTs
- Papers
	- PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization (ECCV 2022)
	- I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference (ICCV 2023)
- Conclusion

- What is quantization?
	- Motivation for optimizing models
		- −Model size reduction
			- ҉Computer vision models have huge model size
				- \checkmark Improvements in the accuracy have highly over-parameterized
		- −Performance benefits
			- ҉Edge devices don't have enough memory
				- \checkmark Hardware efficiency on several metrics (latency, energy and power)

−Applications such as real-time intelligent(health care monitoring, autonomous driving, …)

- Method for optimizing models
	- −Quantization
	- −Pruning
	- −Knowledge Distillation
	- −Efficient Network Design

- What is quantization?
	- Process of reducing the precision of the model parameters(weights and activations)
		- −Floating point(FP) value => INT value
	- **Basic concepts**
		- Quantization : $Q(r) = \left[\frac{r}{S}\right] Z; S = \frac{\beta \alpha}{2^b 1}$
		- $\overline{}$ Dequantization : $\tilde{r} = S(Q(r) + Z)$

Notations

- $\mathcal{Q}(r)$ = quantized representation of r
- \therefore r = real value (FP)
- \therefore *S* = scale factor
- $\therefore Z$ = zero-point
- $\therefore \alpha, \beta$ =bounded range(clipping range)
- \therefore *b* = bit width
- $\left|\cdot\right|$ = rounding function

- What is quantization?
	- **Basic concepts**
		- Quantization : $Q(r) = \left[\frac{r}{S}\right] Z; S = \frac{\beta \alpha}{2^b 1}$
		- Dequantization : $\tilde{r} = S(Q(r) Z)$
	- Considerations
		- − Fine-tuning methods (QAT vs PTQ)
			- ҉PTQ Static vs Dynamic
		- − Additional elements
			- ҉ Batch normalization folding
			- ҉ Symmetric vs Asymmetric
			- ҉ Uniform vs Non-uniform
			- ҉ Quantization granularity
		- −Advanced concepts
			- **Simulated vs Integer-only**
			- ҉ Mixed-Precision

SOGANG UNIVERSITY

҉ Combined with various method(Pruning, KD) 서강대학교

Overview of QAT and PTQ

Overview of Simulated and Integer-only quantization

< Left : Simulated, Right : Integer-only >

- Post-training quantization and Quantization-aware training
	- Post-training quantization(PTQ)
		- −A method of quantizing the resulting parameter values at pre-trained model
			- ҉Advantages : No fine-tuning required
			- \therefore Disadvantages : For small models with large parameter size, accuracy drop is large
		- −Static vs Dynamic method
			- Static : The quant parameters of weight and activation values are kept unchanged in inference
			- \mathbb{R} Dynamic : Weights are statically quantized, but the quant parameters of activations changed per-sample

▪ Quantization-aware training(QAT)

- −A method of quantization finds optimal parameter values during training
	- Advantages: Accuracy drop is very small
	- ҉Disadvantages: Fine-tuning required

- CNNs vs ViTs
	- The trend of Vision Transformer on paperswithcode.com

▪ Motivation of Vision Transformer

- −Transformer has achieved remarkable performance on a variety of computer vision application
- −Vision Transformers are often of sophisticated architectures, which are more difficult to be developed on mobile devices compared with CNN

- Keyword
	- Weight, Activation map / Uniform, Static (calibration, clipping)
	- Simulation(fake quant) / Post-training
- Abstract

ᅥ강대한교 **SOGANG UNIVERSITY**

- Post-training quantization method
- Using twin uniform quantization method and Hessian guided metric
	- −Why do we use twin uniform quantization and Hessian metric?

< Distribution of post-softmax, post-GELU > < Different scaling factor > < Distance between CE and various metric >

• Challenges

- PTQ has achieved great success on CNN
	- −But directly bringing it to vision transformer results in more than 1% accuracy drop

▪ Why?

 \rightarrow – Softmax \rightarrow unbalanced distribution \rightarrow most of values are very close to zero

 \therefore Large scaling factor to make small values to zero \Rightarrow it least to a large error

 $-GELU \rightarrow$ highly asymmetrical distribution \rightarrow difficult to quantify both the positive and negative values

< Distribution of post-softmax, post-GELU >

3) Zhenhua, Liu, et al."Post-training quantization for vision transformer",(NIPS 2021)

PTQ4ViT

• Overview of the proposed framework

① Twin uniform quantization(adjusting scale)

- It can be efficiently processed on existing hardware devices(CPU, GPU)
	- Post GELU activations
	- Post softmax activations

② Hessian guided metric

- The metric to determine the optimal scaling factor is not accurate on vision transformers
	- MSE, Cosine distance [EasyQuant²⁾] CNN
	- Pearson correlation coefficient [PTQ for ViT³⁾]
- Hessian guided metric to determine the quantization parameters

- Base PTQ Method
	- **Basic concepts**
		- −The main body of ViTs is a stack of blocks, each block is divided into a multi-head selfattention(MSA) module and a multi-layer perceptron(MLP)
		- −The simplest symmetric uniform quantization

$$
I = \left\lfloor \frac{clip(R, -m, m)}{S} \right\rfloor, where S = \frac{2m}{2^{k}-1}
$$

• Find optimal scales with

$$
\min_{\Delta_A \Delta_B} distance(0, \hat{0})
$$

$$
\hat{0} = \Delta_A \Delta_B A_q B_q
$$

- −EasyQuant2) uses cosine distance as the metric to calculate the distance
- \sim Search $\Delta_A \Delta_B$ from (In EasyQuant, α , β = 0.5, 1.2)

$$
\left[\alpha \frac{A_{max}}{2^{k-1}}, \beta \frac{A_{max}}{2^{k-1}}\right], \left[\alpha \frac{B_{max}}{2^{k-1}}, \beta \frac{B_{max}}{2^{k-1}}\right]
$$

−Base PTQ results in more than 1% accuracy drop

• Method

- Twin Uniform Quantization
	- −Large values after softmax \rightarrow high correlation (two patches) \rightarrow large scaling factors

Simply,

- Large values \rightarrow large scaling factors
- Small values \rightarrow small scaling factors

 $-$ Twin uniform quantization \rightarrow efficiently processing on CPU and GPUs

Flag expression

000

- For sign bit
	- \bullet 0 \rightarrow large scaling factors
	- \blacksquare 1 \rightarrow small scaling factors

• Method

▪ Twin Uniform Quantization

−Two quantization ranges (R1, R2) are controlled by two scaling factors Δ_{R1} , Δ_{R2}

$$
T_K(x, \Delta_{R1}, \Delta_{R2}) = \begin{cases} \varphi_{k-1}(x, \Delta_{R1}), x \in R1 \\ \varphi_{k-1}(x, \Delta_{R2}), otherwise \end{cases}
$$

−Post Softmax case

 \mathbb{R} values ∈ R1 = [0,2^{k-1} Δ_{R1}^{s}) \rightarrow well quantized by a small Δ_{R1}^{s}

: Use fixed range $\Delta_{\text{R2}}^{\text{s}} = \frac{1}{2^{k-1}}$, R2 = [0,1] → large values in R2

−Post GELU case

$$
\Leftrightarrow \text{R1} = [-2^{k-1}\Delta_{R1}^g,0]
$$

 \checkmark Use fixed range = Δ_{R1}^g

 ν R1 covers the entire range of negative numbers

 κ R2 = [0, 2^{k-1} $\Delta_{\rm R2}^{\rm g}$]

- When calibrating the network, search for the optimal Δ_{R1}^{s} , Δ_{R2}^{g}

• Method

• Hessian Guided Metric

−Prior papers greedily determine the scaling factors of inputs and weights layer by layer

 $\frac{1}{2}$ MSE, cosine distance, Pearson correlation \rightarrow inaccurate

: Blocks.6.mlp.fc1:activation $\rightarrow \frac{0.4 A_{max}}{2^{k-1}}$ \rightarrow optimal = 0.75

- −The distance between the last layer's output before and after quantization can be more accurate in PTO
	- \therefore Executing the network many times to calculate the last layer's output, which **consumes too much time**

< Distance between the layer outputs before and after quantization and CE >

• Method

• Hessian Guided Metric

 $-$ Hessian guided metric to determine the scaling factors \rightarrow high accuracy and quick quantization

Approximation because of the difficulty of direct calculation

 \blacktriangleright ; $L = \mathit{CE}(\hat{y}, y)$, where y is FP32 result; CE:cross-entropy $\sqrt{\ }$ -Quantization brings a small perturbation ϵ on weight

 $\hat{W} = W + \epsilon$

−Analyze the influence of quantization on task loss by Taylor series expansion Firstly, Use Taylor series expansion in AdaRound2)

 $\mathbb{E}\left[L(\widehat{W})\right] - \mathbb{E}\left[L(W)\right] \approx \epsilon^T \bar{g}^{(W)} + \frac{1}{2} \epsilon^T \bar{H}^{(W)} \epsilon^T$

 $\check{g}^{(W)}$ is gradients and $\bar{H}^{(W)}$ is the Hessian matrix, $\mathbb{E}[L(W)]$ is the expectation of loss

−The target is to find the scaling factors to minimize the influence

 $\lim_{\Delta} \left(\mathbb{E} \big[L(\widehat{W}) \big] - \mathbb{E} \big[L(W) \big] \right)$

−The optimization can be approximated

Use term in BRECQ proposed

$$
\lim_{\Delta \to 0} \lim_{\Delta} \left(\mathbb{E}\left[\left(\hat{O}^l - O^l \right)^T diag\left(\left(\frac{\partial L}{\partial o_1^l} \right)^2, \dots, \left(\frac{\partial L}{\partial o_{|O^l|}^l} \right)^2 \right) \left(\hat{O}^l - O^l \right) \right]_{\text{Minimum } \hat{O}^l, -O^l}
$$

 $\sqrt{0}^l$, 0^l are the outputs of the l_{th} layer before and after quantization, respectively

• Method

Algorithm

Searches for the optimal scaling factors of each layer

• Experimental results

Results between base PTQ and PTQ4ViT

- **Base PTQ** : EasyQuant results more than 1% accuracy drop
- **PTQ4ViT** : low or slightly high accuracy

Results of the effect of the proposed method

- When Hessian Guided metric is used, accuracy is high
- Overall, when all methods are used, various model accuracy is high

Conclusion

- Conclusion
	- Twin uniform quantization and a Hessian guided metric are proposed
	- They can decrease the quantization error and improve the prediction accuracy
- Limitations
	- Do not quantize Non-linear layer
		- Softmax, GELU, LayerNorm \rightarrow Integer-only quantization?
	- Taylor series expansion is the approximation
		- CE and Hessian do not match completely

- Keyword
	- All layer(weight, activation map, softmax, GELU, LayerNorm) / Uniform
	- Integer-only / Simulation(fake quant) / QAT
- Abstract
	- Quantization-aware training method
	- First work on integer-only quantization for ViTs.
		- −Apply to Quantization of Softmax, GELU, LayerNorm
	- What is integer-only quantization?
		- −Eliminates dequantization and enables to be performed with integer-only arithmetic

• Overview of the proposed framework

- **4 1 1 1 1 Dyadic Arithmetic for Linear Operations**
	- Use integer bit-shifting
		- § Embedding, MatMul, Dense layer
	- ② Integer-only Softmax: Shiftmax
		- Due to the non-linearity, use the approximation and bit-shifting
	- ③ Integer-only GELU: ShiftGELU
		- Due to the non-linearity, use the approximation by sigmoid function and bit-shifting
	- ④ Integer-only LayerNorm: I-LayerNorm
		- Use integer iterative approach via bitshifting

• Method

Basic concepts

- −The main body of ViTs is a stack of blocks, each block is divided into a multi-head selfattention(MSA) module and a multi-layer perceptron(MLP)
- −The simplest symmetric uniform quantization

 $\left\{ \begin{array}{l} \varepsilon \in \left[\frac{clip(R,-m,m)}{S} \right], where \ S = \ \frac{2m}{2^k-1} \end{array} \right.$

•
$$
\hat{X} = MSA(LayerNorm(X)) + X
$$

\n
$$
MSA(X) = Concat(Attn_1, Attn_2, ..., Attn_h)W^O
$$
\n
$$
: Attn_i = Softmax\left(\frac{Q_i \cdot K_i^T}{\sqrt{d}}\right) V_i
$$
\n•
$$
Y = MLP(LayerNorm(\hat{X})) + \hat{X}
$$
\n
$$
MLP(\hat{X}) = GELU(\hat{X}W_1 + b_1)W_2 + b_2
$$

•
$$
\hat{X} = MSA(I - LayerNorm(X)) + X
$$

$$
MSA(X) = Concat(Attn_1, Attn_2, ..., Attn_h)W^0
$$

$$
; Attn_i = Shiftmax\left(\frac{Q_i \cdot K_i^T}{\sqrt{d}}\right) V_i
$$

•
$$
Y = MLP(I - LayerNorm(\hat{X})) + \hat{X}
$$

\n $MLP(\hat{X}) = ShiftGELU(\hat{X}W_1 + b_1)W_2 + b_2$

• Method

▪ Dyadic Arithmetic for Linear Operations

−The dyadic arithmetic pipeline, which uses integer bit-shifting

−MatMul, Dense layer (INT32=>INT8)

- Method
	- Integer-only Softmax: Shiftmax
		- −Due to the non-linearity, Softmax cannot follow the dyadic arithmetic
		- [−]The approximation method Shiftmax **Pseudo code**

• Method

SOGANG UNIVERSITY

▪ Integer-only Softmax: Shiftmax

-- **ShiftExp function**

- Line1 : To use shifter, convert the base e to 2 (approximation) $log_2 e = (1.0111)_b$ $e^{S_{\Delta}I_{\Delta}} = 2^{S_{\Delta}(I_{\Delta}\cdot \log_2 e)} \approx 2^{S_{\Delta}\cdot (I_{\Delta} + (I_{\Delta} \gg 1) - (I_{\Delta} \gg 4))}$
- Line3, 4: integer and decimal part

Due to not integer, calculating integer and decimal part respectively

- Line5: Approximate the linear function for low-cost computation ∴ $2^{S_{\Delta} \cdot I_{\Delta}} \approx S_{\Delta} \cdot I_{\Delta}$
- Line6: To avoid too small values

-- **Shiftmax function**

- Line1 : prevent overflow
- Line2 : output to use Shiftmax function Applying the shift to the e to output the transformed input and the scale
- Line3 : IntDiv function

Output : \cdot $s_{\Delta_{\bm i}}$ I_{Δ_i} Σ_j e $s_{\Delta_{\vec{J}}}$ $\cdot I_{\Delta_j}$ => S_{Δ_j} . I_{Δ_j} $S_{\Delta j}$. $\sum_{j} I_{\Delta j}$

• Method

▪ Integer-only GELU: ShiftGELU

−GELU is the non-linear activation function

Pseudo code

• Method

SOGANG UNIVERSITY

▪ Integer-only GELU: ShiftGELU

• Method

• Integer-only LayerNorm: I-LayerNorm

- −LayerNorm needs to dynamically compute statistics(mean, std)
- −Due to the square root arithmetic, using bit-shifting

• Experimental results

▪ Accuracy and latency results on various model(ViT, DeiT, Swin) on ImageNet dataset

- Top-1 accuracy : comparable or slightly higher
- Latency : 3.72~4.11 X inference speedup

Conclusion

- Conclusion
	- First integer-only quantization for Vision Transformer
	- I-ViT quantized the entire computational graph
		- −Dyadic arithmetic pipeline
			- ҉Linear operation (MatMul, Dense layer)
		- −Integer-only approximation methods
			- ҉Non-linear operation(Softmax, GELU, LayerNorm)
	- Compared to the FP model, similar or slightly higher accuracy
	- $-3.72 4.11$ X speedup
- Limitations
	- Factors in accuracy loss using approximate methods

Thank you

