2023 Summer Seminar

The Quantization of Vision Transformer

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented By Jincheol Yang

Outline

• Intro

- What is quantization?
- Post-training quantization and Quantization-aware training
- CNNs vs ViTs
- Papers
 - PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization (ECCV 2022)
 - I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference (ICCV 2023)
- Conclusion

- What is quantization?
 - Motivation for optimizing models
 - Model size reduction
 - Scomputer vision models have huge model size
 - \checkmark Improvements in the accuracy have highly over-parameterized
 - -Performance benefits
 - Edge devices don't have enough memory
 - \checkmark Hardware efficiency on several metrics (latency, energy and power)
 - Applications such as real-time intelligent(health care monitoring, autonomous driving, ...)
 - Method for optimizing models
 - -Quantization
 - -Pruning
 - -Knowledge Distillation
 - -Efficient Network Design

- What is quantization?
 - Process of reducing the precision of the model parameters(weights and activations)
 - Floating point(FP) value => INT value
 - Basic concepts
 - Quantization : $Q(r) = \left[\frac{r}{S}\right] Z; S = \frac{\beta \alpha}{2^{b} 1}$
 - Dequantization : $\tilde{r} = S(Q(r) + Z)$

Notations

- g : Q(r) = quantized representation of r
- f: r = real value (FP)
- s : S = scale factor
- z :=zero-point
- $:: \alpha, \beta$ =bounded range(clipping range)
- b = bit width
- $f_{i} \in [\cdot] = rounding function$

0.34 3.75 5.64 1.12 2.7 -0.9 -4.7 0.68 1.43 FP32 quantized (pre-quantized) 134 217 64 76 119 21 3 81 99 INT8 (quantized) dequantized 3.62 5.29 0.41 1.3 2.8 -0.92 0.71 -4.5 1.39 FP32 (dequantized)

- What is quantization?
 - Basic concepts
 - Quantization : $Q(r) = \left[\frac{r}{s}\right] Z; S = \frac{\beta \alpha}{2^{b} 1}$
 - Dequantization : $\tilde{r} = S(Q(r) Z)$
 - Considerations
 - Fine-tuning methods (QAT vs PTQ)
 - September 2015 PTQ Static vs Dynamic
 - Additional elements
 - SE Batch normalization folding
 - Symmetric vs Asymmetric
 - 🔆 Uniform vs Non-uniform
 - 🔅 Quantization granularity
 - -Advanced concepts

SOGANG UNIVERSITY

- Simulated vs Integer-only
- Si Mixed-Precision
- طاتة: Combined with various method(Pruning, KD)

Overview of QAT and PTQ

Overview of Simulated and Integer-only quantization

< Left : Simulated, Right : Integer-only >

- Post-training quantization and Quantization-aware training
 - Post-training quantization(PTQ)
 - -A method of quantizing the resulting parameter values at pre-trained model
 - State Advantages : No fine-tuning required
 - E Disadvantages : For small models with large parameter size, accuracy drop is large
 - -Static vs Dynamic method
 - Static : The quant parameters of weight and activation values are kept unchanged in inference
 - Dynamic : Weights are statically quantized, but the quant parameters of activations changed per-sample

Quantization-aware training(QAT)

- -A method of quantization finds optimal parameter values during training
 - Stadvantages : Accuracy drop is very small
 - :: Disadvantages : Fine-tuning required

- CNNs vs ViTs
 - The trend of Vision Transformer on paperswithcode.com

Motivation of Vision Transformer

- Transformer has achieved remarkable performance on a variety of computer vision application
- Vision Transformers are often of sophisticated architectures, which are more difficult to be developed on mobile devices compared with CNN

- Keyword
 - Weight, Activation map / Uniform, Static(calibration, clipping)
 - Simulation(fake quant) / Post-training
- Abstract
 - Post-training quantization method
 - Using twin uniform quantization method and Hessian guided metric
 - Why do we use twin uniform quantization and Hessian metric?

< Distribution of post-softmax, post-GELU >

< Different scaling factor >

< Distance between CE and various metric >

• Challenges

• PTQ has achieved great success on CNN

-But directly bringing it to vision transformer results in more than 1% accuracy drop

• Why?

-Softmax \rightarrow unbalanced distribution \rightarrow most of values are very close to zero

:E Large scaling factor to make small values to zero -> it least to a large error

-GELU → highly asymmetrical distribution → difficult to quantify both the positive and negative values

< Distribution of post-softmax, post-GELU >

 Zhihang, Yuan, et al. "PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization",(ECCV, 2022)

 2)
 Di, Wu, et al. "EasyQuant: Post training quantization via scale optimization",(arXiv 2020)

 3)
 Zhenhua, Liu, et al. "Post-training quantization for vision transformer",(NIPS 2021)

PTQ4ViT

• Overview of the proposed framework

① Twin uniform quantization(adjusting scale)

- It can be efficiently processed on existing hardware devices(CPU, GPU)
 - Post GELU activations
 - Post softmax activations

2 Hessian guided metric

- The metric to determine the optimal scaling factor is not accurate on vision transformers
 - MSE, Cosine distance [EasyQuant²⁾] CNN
 - Pearson correlation coefficient [PTQ for ViT³)]
- Hessian guided metric to determine the quantization parameters

1)

- Base PTQ Method
 - Basic concepts
 - The main body of ViTs is a stack of blocks, each block is divided into a multi-head selfattention(MSA) module and a multi-layer perceptron(MLP)
 - The simplest symmetric uniform quantization

$$I = \left\lfloor \frac{clip(R,-m,m)}{S} \right\rfloor$$
 , where $S = \frac{2m}{2^{k}-1}$

Find optimal scales with

$$\min_{\Delta_A \Delta_B} distance(0, \hat{O})$$
$$\hat{O} = \Delta_A \Delta_B A_q B_q$$

- -EasyQuant²⁾ uses cosine distance as the metric to calculate the distance
- -Search $\Delta_A \Delta_B$ from (In EasyQuant, α , $\beta = 0.5, 1.2$)

$$\left[\alpha \frac{A_{max}}{2^{k-1}}, \beta \frac{A_{max}}{2^{k-1}}\right], \left[\alpha \frac{B_{max}}{2^{k-1}}, \beta \frac{B_{max}}{2^{k-1}}\right]$$

-Base PTQ results in more than 1% accuracy drop

• Method

- Twin Uniform Quantization
 - -Large values after softmax \rightarrow high correlation (two patches) \rightarrow large scaling factors

Simply,

- Large values \rightarrow large scaling factors
- Small values \rightarrow small scaling factors

-Twin uniform quantization \rightarrow efficiently processing on CPU and GPUs

Flag expression

000

- For sign bit
 - $0 \rightarrow$ large scaling factors
 - 1 \rightarrow small scaling factors

• Method

- Twin Uniform Quantization
 - Two quantization ranges (R1, R2) are controlled by two scaling factors Δ_{R1} , Δ_{R2}

$$T_{K}(x, \Delta_{R1}, \Delta_{R2}) = \begin{cases} \varphi_{k-1}(x, \Delta_{R1}), x \in R1\\ \varphi_{k-1}(x, \Delta_{R2}), otherwise \end{cases}$$

-Post Softmax case

⇒ values ∈ R1 = $[0,2^{k-1}\Delta_{R1}^s)$ → well quantized by a small Δ_{R1}^s ⇒ Use fixed range $\Delta_{R2}^s = \frac{1}{2^{k-1}}$, R2 = [0,1] → large values in R2

-Post GELU case

$$\approx R1 = [-2^{k-1}\Delta_{R1}^g, 0]$$

 \checkmark Use fixed range = Δ_{R1}^{g}

 \checkmark R1 covers the entire range of negative numbers

 ${\rm grad} R2 = [0,2^{k-1}\Delta^g_{R2}]$

- When calibrating the network, search for the optimal Δ_{R1}^{s} , Δ_{R2}^{g}

• Method

Hessian Guided Metric

- Prior papers greedily determine the scaling factors of inputs and weights layer by layer

 \Rightarrow MSE, cosine distance, Pearson correlation \rightarrow inaccurate

: Blocks.6.mlp.fc1:activation $\rightarrow \frac{0.4A_{max}}{2^{k-1}} \rightarrow \text{optimal} = 0.75$

- The distance between the last layer's output before and after quantization can be more accurate in PTO
 - Executing the network many times to calculate the last layer's output, which consumes too much time

< Distance between the layer outputs before and after quantization and CE >

• Method

Hessian Guided Metric

-Hessian guided metric to determine the scaling factors \rightarrow high accuracy and quick quantization

Approximation because of the difficulty of direct calculation $f_{ij} L = CE(\hat{y}, y)$, where y is FP32 result ; CE:cross-entropy

-Quantization brings a small perturbation ϵ on weight

 $\lim \widehat{W} = W + \epsilon$

- Analyze the influence of quantization on task loss by Taylor series expansion in AdaRound²⁾

 $\mathbf{E}\left[L(\widehat{W})\right] - \mathbb{E}[L(W)] \approx \epsilon^T \overline{g}^{(W)} + \frac{1}{2} \epsilon^T \overline{H}^{(W)} \epsilon$

 $\checkmark \bar{g}^{(W)}$ is gradients and $\bar{H}^{(W)}$ is the Hessian matrix, $\mathbb{E}[L(W)]$ is the expectation of loss

- The target is to find the scaling factors to minimize the influence

 $\lim_{\Delta} \min_{\Delta} (\mathbb{E}[L(\widehat{W})] - \mathbb{E}[L(W)])$

- The optimization can be approximated

Use term in BRECQ proposed

$$\lim_{\Delta} \left(\mathbb{E}\left[\left(\hat{O}^{l} - O^{l} \right)^{T} diag(\left(\frac{\partial L}{\partial O_{1}^{l}} \right)^{2}, \dots, \left(\frac{\partial L}{\partial O_{|O^{l}|}^{l}} \right)^{2} \right) \left(\hat{O}^{l} - O^{l} \right) \right]_{\text{Minimum } \hat{O}^{l}, -O^{l}}$$

 $\checkmark \hat{O}^{l}$, O^{l} are the outputs of the l_{th} layer before and after quantization, respectively

• Method

Algorithm

Searches for the optimal scaling factors of each layer

• Experimental results

Results between base PTQ and PTQ4ViT

- **Base PTQ** : EasyQuant results more than 1% accuracy drop
- **PTQ4ViT** : low or slightly high accuracy

Model	FP32	Base	PTQ	PTQ4ViT		
Model		W8A8	W6A6	W8A8	W6A6	
ViT-S/224/32	75.99	73.61(2.38)	60.14(15.8)	75.58(0.41)	71.90(4.08)	
ViT-S/224	81.39	80.46(0.91)	70.24(11.1)	81.00(0.38)	78.63(2.75)	
ViT-B/224	84.54	83.89(0.64)	75.66(8.87)	84.25(0.29)	81.65(2.89)	
ViT-B/384	86.00	85.35(0.64)	46.88(39.1)	85.82(0.17)	83.34(2.65)	
DeiT-S/224	79.80	77.65(2.14)	72.26(7.53)	79.47(0.32)	76.28(3.51)	
DeiT-B/224	81.80	80.94(0.85)	78.78(3.01)	81.48(0.31)	80.25(1.55)	
DeiT-B/384	83.11	82.33(0.77)	68.44(14.6)	82.97(0.13)	81.55(1.55)	
Swin-T/224	81.39	80.96(0.42)	78.45(2.92)	81.24(0.14)	80.47(0.91)	
Swin-S/224	83.23	82.75(0.46)	81.74(1.48)	83.10(0.12)	82.38(0.84)	
Swin-B/224	85.27	84.79(0.47)	83.35(1.91)	85.14(0.12)	84.01(1.25)	
Swin-B/384	86.44	86.16(0.26)	85.22(1.21)	86.39(0.04)	85.38(1.04)	

Results of the effect of the proposed method

- When Hessian Guided metric is used, accuracy is high
- Overall, when all methods are used, various model accuracy is high

	Hessian	Softmax	GELU	Top-1 A	ccuracy
Model	Guided	Twin	Twin	W8A8	W6Å6
				80.47	70.24
	\checkmark			80.93	77.20
ViT-S/224	\checkmark	\checkmark		81.11	78.57
81.39	\checkmark		\checkmark	80.84	76.93
		\checkmark	\checkmark	79.25	74.07
	\checkmark	\checkmark	\checkmark	81.00	78.63
				83.90	75.67
	\checkmark			83.97	79.90
ViT-B/224	\checkmark	\checkmark		84.07	80.76
84.54	\checkmark		\checkmark	84.10	80.82
		\checkmark	\checkmark	83.40	78.86
	\checkmark	\checkmark	\checkmark	84.25	81.65
				85.35	46.89
	\checkmark			85.42	79.99
ViT-B/384	\checkmark	\checkmark		85.67	82.01
86.00	\checkmark		\checkmark	85.60	82.21
		\checkmark	\checkmark	84.35	80.86
	\checkmark	\checkmark	\checkmark	85.89	83.19

Conclusion

- Conclusion
 - Twin uniform quantization and a Hessian guided metric are proposed
 - They can decrease the quantization error and improve the prediction accuracy
- Limitations
 - Do not quantize Non-linear layer
 - Softmax, GELU, LayerNorm → Integer-only quantization?
 - Taylor series expansion is the approximation
 - CE and Hessian do not match completely

- Keyword
 - All layer(weight, activation map, softmax, GELU, LayerNorm) / Uniform
 - Integer-only / Simulation(fake quant) / QAT
- Abstract

OGANG UNIVERSITY

- Quantization-aware training method
- First work on integer-only quantization for ViTs.
 - Apply to Quantization of Softmax, GELU, LayerNorm
- What is integer-only quantization?
 - -Eliminates dequantization and enables to be performed with integer-only arithmetic

• Overview of the proposed framework

- ① Dyadic Arithmetic for Linear Operations
 - Use integer bit-shifting
 - Embedding, MatMul, Dense layer
- 2 Integer-only Softmax: Shiftmax
 - Due to the non-linearity, use the approximation and bit-shifting
- ③ Integer-only GELU: ShiftGELU
 - Due to the non-linearity, use the approximation by sigmoid function and bit-shifting
- (4) Integer-only LayerNorm: I-LayerNorm
 - Use integer iterative approach via bitshifting

• Method

- Basic concepts
 - The main body of ViTs is a stack of blocks, each block is divided into a multi-head selfattention(MSA) module and a multi-layer perceptron(MLP)
 - The simplest symmetric uniform quantization

set $I = \left\lfloor \frac{clip(R,-m,m)}{S} \right\rfloor$, where $S = \frac{2m}{2^{k}-1}$

• $\hat{X} = MSA(LayerNorm(X)) + X$ $MSA(X) = Concat(Attn_1, Attn_2, ..., Attn_h)W^{O}$; $Attn_i = Softmax\left(\frac{Q_i \cdot K_i^T}{\sqrt{d}}\right)V_i$ • $Y = MLP(LayerNorm(\hat{X})) + \hat{X}$ $MLP(\hat{X}) = GELU(\hat{X}W_1 + b_1)W_2 + b_2$

•
$$\hat{X} = MSA(I - LayerNorm(X)) + X$$

$$MSA(X) = Concat(Attn_1, Attn_2, ..., Attn_h)W^{O}$$

; $Attn_i = Shiftmax\left(\frac{Q_i \cdot K_i^T}{\sqrt{d}}\right)V_i$

•
$$Y = MLP(I - LayerNorm(\hat{X})) + \hat{X}$$
$$MLP(\hat{X}) = ShiftGELU(\hat{X}W_1 + b_1)W_2 + b_2$$

• Method

Dyadic Arithmetic for Linear Operations

- The dyadic arithmetic pipeline, which uses integer bit-shifting

-MatMul, Dense layer (INT32=>INT8)

• Input(query, key) • $Q = (S_Q, I_Q), K = (S_K, I_K)$ • Output • $A' = S_{A'} \cdot I_{A'} = S_Q \cdot S_K \cdot (I_Q * I_K^T)$ • Requantization (INT32 => INT8) • $I_A = \left\lfloor \frac{S_{A'} \cdot I_{A'}}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot (I_Q * I_K^T) \right\rfloor$ • Convert the rescaling to a dyadic number(DN) • $DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = \left(b \cdot (I_Q * I_K^T) \right) \gg c$ • Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	Fo	or example ; about MatMul
• $Q = (S_Q, I_Q), K = (S_K, I_K)$ • Output • $A' = S_{A'} \cdot I_{A'} = S_Q \cdot S_K \cdot (I_Q * I_K^T)$ • Requantization (INT32 => INT8) • $I_A = \left\lfloor \frac{S_{A'} \cdot I_{A'}}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot (I_Q * I_K^T) \right\rfloor$ • Convert the rescaling to a dyadic number(DN) • $DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = \left(b \cdot (I_Q * I_K^T) \right) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	10	■ · · ·
• Output • $A' = S_{A'} \cdot I_{A'} = S_Q \cdot S_K \cdot (I_Q * I_K^T)$ • Requantization (INT32 => INT8) • $I_A = \left\lfloor \frac{S_{A'} \cdot I_{A'}}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot (I_Q * I_K^T) \right\rfloor$ • Convert the rescaling to a dyadic number(DN) • $DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = \left(b \cdot (I_Q * I_K^T) \right) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	•	
• $A' = S_{A'} \cdot I_{A'} = S_Q \cdot S_K \cdot (I_Q * I_K^T)$ • Requantization (INT32 => INT8) • $I_A = \left\lfloor \frac{S_{A'} \cdot I_{A'}}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot (I_Q * I_K^T) \right\rfloor$ • Convert the rescaling to a dyadic number(DN) • $DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = \left(b \cdot (I_Q * I_K^T) \right) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)		• $Q = (S_Q, I_Q), K = (S_K, I_K)$
• Requantization (INT32 => INT8) • $I_A = \left\lfloor \frac{S_A' \cdot I_A'}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot (I_Q * I_K^T) \right\rfloor$ • Convert the rescaling to a dyadic number(DN) • $DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = \left(b \cdot (I_Q * I_K^T) \right) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	•	Output
• $I_A = \left\lfloor \frac{S_{A'} \cdot I_{A'}}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot (I_Q * I_K^T) \right\rfloor$ • Convert the rescaling to a dyadic number(DN) • $DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = \left(b \cdot (I_Q * I_K^T) \right) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)		• $A' = S_{A'} \cdot I_{A'} = S_Q \cdot S_K \cdot \left(I_Q * I_K^T\right)$
• Convert the rescaling to a dyadic number(DN) • $DN(\frac{s_Q \cdot s_K}{s_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = (b \cdot (I_Q * I_K^T)) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	•	Requantization (INT32 => INT8)
• $DN(\frac{s_Q \cdot s_K}{s_A}) = \frac{b}{2c}$ • The integer-only arithmetic pipeline of MatMul • $I_A = (b \cdot (I_Q * I_K^T)) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)		• $I_A = \left\lfloor \frac{S_A' \cdot I_A'}{S_A} \right\rfloor = \left\lfloor \frac{S_Q \cdot S_K}{S_A} \cdot \left(I_Q * I_K^T \right) \right\rfloor$
• The integer-only arithmetic pipeline of MatMul • $I_A = (b \cdot (I_Q * I_K^T)) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	•	Convert the rescaling to a dyadic number(DN)
• $I_A = (b \cdot (I_Q * I_K^T)) \gg c$ Notation I : intput(INT8; quantized) S : scaling factor $I_{A'} : I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)		$ DN(\frac{S_Q \cdot S_K}{S_A}) = \frac{b}{2^c} $
Notation I : intput(INT8; quantized) S : scaling factor $I_{A'}: I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	•	The integer-only arithmetic pipeline of MatMul
I : intput(INT8; quantized) S : scaling factor $I_{A'}: I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)		• $I_A = \left(b \cdot \left(I_Q * I_K^T \right) \right) \gg c$
S : scaling factor $I_{A'}: I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)	N	otation
$I_{A'}: I_Q * I_K^T$ (INT32) S_A : pre-calculated scaling factor of the output activation(FP)		I : intput(INT8; quantized)
S_A : pre-calculated scaling factor of the output activation(FP)		S : scaling factor
S_A : pre-calculated scaling factor of the output activation(FP)		$I_{4'}: I_{0} * I_{K}^{T}$ (INT32)
		DN : fraction whose denominator is a power of two

- Method
 - Integer-only Softmax: Shiftmax
 - -Due to the non-linearity, Softmax cannot follow the dyadic arithmetic
 - The approximation method Shiftmax

Pseudo code

-	1: Integer-only Softmax	: Shiftmax
Input:	I_{in} : Integer input	
	S_{in} : Input scaling fa	
	k_{out} : Output bit-prec	1510n
Output:	I_{out} : Integer output	
	S_{out} : Output scaling	factor
Function	ShiftExp(I,S):	
$I_p \leftarrow I_p$	$I + (I \gg 1) - (I \gg 4)$; $\triangleright I \cdot \log_2 e$
$I_0 \leftarrow$	$\lfloor 1/S \rceil;$	
$q \leftarrow \lfloor$	$I_p/(-I_0)$];	⊳ Integer part
$r \leftarrow -$	$\cdot (I_p - q \cdot (-I_0));$	Decimal part
	$((-r)\gg 1)+I_0;$	⊳ Eq. 15
	$-I_b \ll (N-q);^3$	⊳ Eq. 14
$S_{exp} \leftarrow$	$-S/(2^{N});$	
		$S_{exp} \cdot I_{exp} \approx e^{S \cdot I}$
End Func	tion	
Function	Shiftmax (I_{in},S_{in},k	Cout):
	$I_{in} - \max(I_{in});$	⊳ Eq. 12
	$S_{exp}) \leftarrow \texttt{ShiftExp}(I)$	$(\Delta, S_{in});$
	$S_{out}) \leftarrow \text{IntDiv}(I_{exp})$	
		⊳ Eq. 16
return	$(I_{out}, S_{out});$	*
		Softmax $(I_{in} \cdot S_{in})$
End Func		

• Method

Integer-only Softmax: Shiftmax

Algorithm 1: Integer-only Softmax: Shiftmax
Input: I_{in} : Integer input
S_{in} : Input scaling factor
k_{out} : Output bit-precision
Output: I_{out} : Integer output
S_{out} : Output scaling factor
Function ShiftExp (I, S) :
$ I_p \leftarrow I + (I \gg 1) - (I \gg 4); \qquad \triangleright I \cdot \log_2 e$
$I_0 \leftarrow 1/S];$
$q \leftarrow [I_p/(-I_0)];$ \triangleright Integer part
$r \leftarrow -(I_p - q \cdot (-I_0));$ \triangleright Decimal part
$I_b \leftarrow ((-r) \gg 1) + I_0;$ \triangleright Eq. 15
$I_{exp} \leftarrow I_b \ll (N-q);$ ³ \triangleright Eq. 14
$S_{exp} \leftarrow S/(2^N);$
return $(I_{exp}, S_{exp});$ $\triangleright S_{exp} \cdot I_{exp} \approx e^{S \cdot I}$
End Function
Function <code>Shiftmax</code> (I_{in}, S_{in}, k_{out}):
$ I_{\Delta} \leftarrow I_{in} - \max(I_{in}); \qquad \triangleright \text{Eq. 12}$
$(I_{exp}, S_{exp}) \leftarrow \texttt{ShiftExp}(I_{\Delta}, S_{in});$
$(I_{out}, S_{out}) \leftarrow \text{IntDiv}(I_{exp}, \sum I_{exp}, k_{out});$
⊳ Eq. 16
return $(I_{out}, S_{out});$
$\triangleright I_{out} \cdot S_{out} \approx \text{Softmax}(I_{in} \cdot S_{in})$
End Function

End Function

SOGANG UNIVERSITY

ShiftExp function

- Line1 : To use shifter, convert the base e to 2 (approximation) $\therefore \log_2 e = (1.0111)_b \\ e^{S_{\Delta} \cdot I_{\Delta}} = 2^{S_{\Delta} \cdot (I_{\Delta} \cdot \log_2 e)} \approx 2^{S_{\Delta} \cdot (I_{\Delta} + (I_{\Delta} \gg 1) - (I_{\Delta} \gg 4))}$
- Line3, 4: integer and decimal part

Due to not integer, calculating integer and decimal part respectively

- Line5: Approximate the linear function for low-cost computation $\therefore 2^{S_{\Delta} \cdot I_{\Delta}} \approx S_{\Delta} \cdot I_{\Delta}$
- Line6: To avoid too small values

Shiftmax function

- Line1 : prevent overflow
- Line2 : output to use Shiftmax function Applying the shift to the e to output the transformed input and the scale
- Line3 : IntDiv function

Output :
$$\frac{e^{S_{\Delta_i} \cdot I_{\Delta_i}}}{\sum_j e^{S_{\Delta_j} \cdot I_{\Delta_j}}} \Longrightarrow \frac{S_{\Delta_j} \cdot I_{\Delta_j}}{S_{\Delta_j} \cdot \sum_j I_{\Delta_j}}$$

• Method

Integer-only GELU: ShiftGELU

-GELU is the non-linear activation function

Pseudo code

Algorithm	2: Integer-only GELU: ShiftGELU
Input:	I_{in} : Integer input
	S_{in} : Input scaling factor
	k_{out} : Output bit-precision
Output:	I_{out} : Integer output
	S_{out} : Output scaling factor
Function	ShiftGELU(I_{in},S_{in},k_{out}):
$I_p \leftarrow$	$I_{in} + (I_{in} \gg 1) + (I_{in} \gg 3) + (I_{in} \gg 4);$ \$\begin{aligned} > 1.702I \end{aligned}
$I_{\Delta} \leftarrow$	$I_p - \max(I_p);$
$(I_{exp},$	S_{exp}) \leftarrow ShiftExp $(I_{\Delta}, S_{in});$
$(I'_{exp},$	S'_{exp} \leftarrow ShiftExp $(-\max(I_p), S_{in});$
	$S_{div} \leftarrow \text{IntDiv}(I_{exp}, I_{exp} + I'_{exp}, k_{out});$
$(I_{out},$	S_{out}) $\leftarrow (I_{in} \cdot I_{div}, S_{in} \cdot S_{div});$
return	$(I_{out}, S_{out});$
	$\triangleright I_{out} \cdot S_{out} \approx \text{GELU}(I_{in} \cdot S_{in})$
End Func	tion

• Method

Integer-only GELU: ShiftGELU

Algorithm 2: Integer-only GELU: ShiftGELU					
Input: I_{in} : Integer input					
S_{in} : Input scaling factor					
k_{out} : Output bit-precision					
Output: I_{out} : Integer output					
S_{out} : Output scaling factor					
Function ShiftGELU (I_{in}, S_{in}, k_{out}):					
$I_p \leftarrow I_{in} + (I_{in} \gg 1) + (I_{in} \gg 3) + (I_{in} \gg 4);$					
$\triangleright 1.702I$					
$I_{\Delta} \leftarrow I_p - \max(I_p);$					
$(I_{exp}, S_{exp}) \leftarrow \text{ShiftExp}(I_{\Delta}, S_{in});$					
$(I'_{exp}, S'_{exp}) \leftarrow \text{ShiftExp}(-\max(I_p), S_{in});$					
$(I_{div}, S_{div}) \leftarrow \text{IntDiv}(I_{exp}, I_{exp} + I'_{exp}, k_{out});$					
⊳ Eq. 18					
$(I_{out}, S_{out}) \leftarrow (I_{in} \cdot I_{div}, S_{in} \cdot S_{div});$					
return $(I_{out}, S_{out});$					
$\triangleright I_{out} \cdot S_{out} \approx \text{GELU}(I_{in} \cdot S_{in})$					
End Function					

• Method

Integer-only LayerNorm: I-LayerNorm

- -LayerNorm needs to dynamically compute statistics(mean, std)
- Due to the square root arithmetic, using bit-shifting

• Experimental results

- Accuracy and latency results on various model(ViT, DeiT, Swin) on ImageNet dataset

Model	Method	Bit-prec.	Size (MB)	Intonly	Top-1 Acc. (%)	Diff. (%)	Latency (ms)	Speedup
	Baseline	FP32	88	×	81.39	-	11.5	$\times 1.00$
ViT-S	FasterTransformer [34]	INT8	22	×	81.07	-0.32	3.26	×3.53
	I-BERT [19]	INT8	22	\checkmark	80.47	-0.92	3.05	$\times 3.77$
	I-ViT (ours)	INT8	22	\checkmark	81.27	-0.12	2.97	×3.87
	Baseline	FP32	344	×	84.53	-	32.6	×1.00
ViT-B	FasterTransformer [34]	INT8	86	×	84.29	-0.24	8.51	×3.83
	I-BERT [19]	INT8	86	\checkmark	83.70	-0.83	8.19	$\times 3.98$
	I-ViT (ours)	INT8	86	\checkmark	84.76	+0.23	7.93	×4.11
	Baseline	FP32	20	×	72.21	-	5.99	$\times 1.00$
DeiT-T	FasterTransformer [34]	INT8	5	×	72.06	-0.15	1.74	×3.45
	I-BERT [19]	INT8	5	\checkmark	71.33	-0.88	1.66	×3.61
	I-ViT (ours)	INT8	5	\checkmark	72.24	+0.03	1.61	×3.72
	Baseline	FP32	88	×	79.85	-	11.5	×1.00
DeiT-S	FasterTransformer [34]	INT8	22	×	79.66	-0.19	3.26	×3.53
	I-BERT [19]	INT8	22	\checkmark	79.11	-0.74	3.05	×3.77
	I-ViT (ours)	INT8	22	\checkmark	80.12	+0.27	2.97	×3.87
	Baseline	FP32	344	×	81.85	-	32.6	$\times 1.00$
DeiT-B	FasterTransformer [34]	INT8	86	×	81.63	-0.22	8.51	×3.72
	I-BERT [19]	INT8	86	\checkmark	80.79	-1.06	8.19	$\times 3.88$
	I-ViT (ours)	INT8	86	\checkmark	81.74	-0.11	7.93	×4.11
Swin-T	Baseline	FP32	116	×	81.35	-	16.8	×1.00
	FasterTransformer [34]	INT8	29	×	81.06	-0.29	4.55	×3.69
	I-BERT [19]	INT8	29	\checkmark	80.15	-1.20	4.40	$\times 3.82$
	I-ViT (ours)	INT8	29	\checkmark	81.50	+0.15	4.29	×3.92
	Baseline	FP32	200	×	83.20	-	27.8	×1.00
Swin-S	FasterTransformer [34]	INT8	50	×	83.04	-0.34	7.35	×3.78
	I-BERT [19]	INT8	50	\checkmark	81.86	-1.34	7.13	×3.90
	I-ViT (ours)	INT8	50	~	83.01	-0.19	6.92	×4.02

- Top-1 accuracy : comparable or slightly higher
- Latency : 3.72~4.11 X inference speedup

Conclusion

- Conclusion
 - First integer-only quantization for Vision Transformer
 - I-ViT quantized the entire computational graph
 - -Dyadic arithmetic pipeline
 - SE Linear operation (MatMul, Dense layer)
 - -Integer-only approximation methods
 - ::: Non-linear operation(Softmax, GELU, LayerNorm)
 - Compared to the FP model, similar or slightly higher accuracy
 - 3.72~4.11 X speedup
- Limitations
 - Factors in accuracy loss using approximate methods

Thank you

