Referring Expression Segmentation VDSL 하계 세미나

Sogang University Dept. of Artificial Intelligence

Presented by **조유빈**

Outline

- Background
	- Referring Expression Segmentation
	- Transformer
- Referring Expression Segmentation
	- CGFormer^[1]
		- ‐ Contrastive Grouping with Transformer for Referring Image Segmentation (CVPR 2023)
	- GRES^[2]
		- ‐ GRES: Generalized Referring Expression Segmentation (CVPR 2023 Highlight)
- **Conclusion**

- Referring Expression Segmentation
	- Vision-Language multi-modal task
	- Target object를 지칭하는 language expression이 주어지면 이미지 내에서 해당 object만을 추출해내는 segmentation task
	- Challenging points
		- ‐ Target 객체와다른객체들과의relationship 고려
		- ‐ 모호하고복잡한 언어표현에 대한알맞은 이해

- Transformer^[1]
	- Self-attention
		- ‐ 단일sequence 내의서로 다른요소들을관련시켜 한position의 representation을계산
	- Why self-attention
		- ‐ 병렬적으로동시에 연산 가능
		- ‐ 멀리떨어진 원소들 간의path length 감소
			- ҉ Long-term dependency problem 해결
			- ҉ Global dependency 학습

Multi-Head Attention

- Transformer^[1]
	- Encoder
		- ‐ Multi-head self-attention
			- ҉ Self-attention : Q, K, V의 출처가같음(encoder vector)
			- \mathcal{L} Multi-head : 벡터의 차원을 축소시키고 attention을 병렬적으로 수행
				- ✓ 다른관점에서 정보들을수집
				- \checkmark W^Q , W^K , W^V 는 각 attention head마다 값이 다름

SOGANG UNIVERSITY

- Transformer^[1]
	- Decoder
		- ‐ Masked multi-head self-attention
			- ҉ Self-attention : Q, K, V의 출처가같음(decoder vector)
			- $\mathfrak{g}_{\mathbb{R}}$ 일부 원소는 매우 작은 음수 값을 곱해 masking
				- √ 실질적인 의미를 가진 단어가 아닌 <pad>인경우
				- ✓ 현재시점보다 미래에있는단어인 경우

- \forall ; Non self-attention : O (decoder vector) / K, V (encoder vector)
- \therefore Decoder출력을 위해 encoder의 어떤 정보를 참고하면 좋을지 attention 수행

- CGFormer [1]
	- Existing methods fail to capture critical object-level information
		- ‐ Fail to focus on different regions and model their relations
		- ‐ Does not model the inherent differences between query vectors
			- ҉ Still focus on similar regions
	- Contrastive Grouping with Transformer (CGFormer) explicitly captures object-level information via token-based querying and grouping strategy
		- ‐ Different tokens focus on different visual regions without overlaps
		- ‐ Cooperate contrastive learning with the grouping strategy
	- Consecutive decoder achieve cross-level reasoning

- CGFormer [1]
	- Group transformer
		- ‐ Use learnable query tokens to represent object-level information
		- ‐ Update query tokens by alternately querying the linguistic features and grouping visual features
			- \therefore : Tokens capture the rich object characteristics relevant to the expression
	- Use contrastive learning to distinguish the referent token from other tokens
		- ‐ Maximizing the similarity between the referent token and the expression and minimizing the similarities between negative pairs

- CGFormer [1]
	- Group transformer layer
		- ‐ Load Block
			- ҉ Classical cross-attention block
			- $\frac{1}{2}$. Preload what linguistic information the query tokens should focus on at the current layer
		- ‐ Group Block
			- ҉ Interact between vision and language
			- \therefore Group visual features from the feature map into linguistic-enhanced query tokens

- CGFormer [1]
	- Group transformer layer
		- ‐ Group Block
			- \mathcal{I}_i : Embed the query tokens T_i and the vision feature map D_i into a common feature space
			- \mathcal{L} : Calculate the similarities S_{pixel} between every pairwise features of the query tokens T_i' and vision features D'_i (eq.(1))
			- \therefore Compute the group to assign a segment token to by taking the one-hot operation of it argmax over all the groups (*hard assignment*)
				- \checkmark Since the one-hot assignment operation via argmax is not differentiable, adopt a learnable Gumbel-softmax
				- \checkmark Gradient of S_{mask} is equal to the gradient of S_{gumble} , which makes the Group Block differentiable and end-to-end trainable

$$
S_{pixel} = \text{norm}_2(T_i') \text{norm}_2(D_i')^T,
$$
\n(1)

$$
S_{gumbel} = \text{softmax}((S_{pixel} + G)/\tau), G: \text{Gumbel}(0,1) \text{ distribution} \tag{2}
$$

$$
Hard assignment \longrightarrow S_{onehot} = onehot \left(argmax_{N} (S_{gumbel}) \right), \tag{3}
$$

$$
S_{mask} = (S_{onehot})^T - sg(S_{gumbel}) + S_{gumbel}, sg : stop gradient
$$
 (4)

$$
T_i = MLP(S_{mask}D_i') + T_i'
$$
\n(5)

- CGFormer [1]
	- Consecutive decoder
		- ‐ Previous works model the vision-language interaction at multiple levels in parallel and late integrate multi-level results
			- ҉ Fails to perform joint interaction across various levels
		- ‐ Consecutive decoder performs cross-level reasoning
			- $\frac{1}{2}$ Jointly updating the query tokens in every two consecutive decoder layers
			- \mathcal{L} : The two-level cross-modal information will be consecutively propagated in multiple levels from bottom to up

- CGFormer [1]
	- Ablation study
		- ‐ The results of the method 2 and 3 suggest that simply adding tokens cannot boost performance
			- $\frac{1}{2}$. These tokens are likely to focus on similar information rather than distinct regions
		- ‐ Grouping strategy cooperated with contrastive loss to make tokens can focus on different regions
			- $\frac{1}{2}$ Method 4 delivers a 4.35% improvement
		- ‐ Hard assignment helps to obtain a more refined grouping
			- $\frac{1}{2}$ Method 5 achieves an improvement of 1.63%
		- ‐ Method 7 shows the effectiveness of the consecutive decoder
		- ‐ Compared to method 8, method 7 validates the necessity of the proposed contrastive grouping

Table 3. Ablation study on the validation set of RefCOCO. CD: Consecutive Decoder. cos: cosine similarity operation. τ : learnable parameter in Gumble Softmax. Results with $*$ refer to [62].

• CGFormer^[1]

▪ Results

Figure 5. Visualization of grouping results for (a) different tokens (in different colors), (b) the referent token in three stages and (c) segmentation results of unseen objects.

< Visualization results >

- GRES [1]
	- 기존 referring expression segmentation에서는 single target object만을 지칭하는 language expression으로 구성
		- ‐ Multi-target이나 no-target에 대한expression은 고려되지않음
	- 본 논문에서는 새로운 데이터셋인 generalized referring expression segmentation (GRES)을 제안
		- ‐ Single-target, multi-target, no-target에 대한expressions를포함
		- ‐ Enhances the model's reliability and robustness to realistic scenarios where any type of expression can occur unexpectedly

< RES와 GRES 비교 >

- GRES [1]
	- Features of multi-target samples
		- ‐ Usage of counting expressions (ex. *two* people)
			- $\frac{1}{2}$. The model must be able to differentiate cardinal numbers from ordinal numbers
		- ‐ Compound sentence structures without geometrical relation (ex. *and, except, with, or*)
			- $\frac{1}{2}$. Require the model to understand the long-range dependencies of both the image and sentence
		- ‐ Domain of attributes (ex. *Right* lady in *blue* and kid in *white*)
			- \therefore Require the model to have a deeper understanding of all the attributes and map the relationship of these attributes to their corresponding objects
		- ‐ More complex relationships
			- \mathcal{L} Require the model to have a deep understanding of all instances and their interactions in the image and expression
	- Rules for no-target samples to keep the dataset at a reasonable difficulty
		- ‐ The expression cannot be totally irrelevant to the image
		- ‐ The annotators could choose a deceptive expression drawn from other images

 $Image(a)$

i. "The two people on the far left"

ii. "Everyone except the kid in white"

 $Image(b)$

i. "The bike and two passengers on it"

ii. "The bike that has two passengers and its driver"

- GRES [1]
	- Overall architecture of the proposed baseline model for GRES
		- ‐ Modeling the interaction among regions in the image
			- $\frac{1}{2}$. Different from previous works using hard-split, regions are not predefined by using learnable queries
		- For the n^{th} regions, scalar x_r^n indicates its probability of containing targets
		- Region filter F_f is multiplied with the mask features F_m to generate the region mask M_r
		- Outputs : segmentation mask $M \&$ no-target label E

 \forall : If E is predicted to be positive, the output mask M will be set to empty

- GRES [1]
	- ReLA: ReLAtionship modeling
		- ‐ Region-Image Cross Attention (RIA)
			- ҉ Flexibly collects region image features
			- \mathbb{R}^2 : Using P^2 learnable Region-based Queries supervised by the minimap
				- \checkmark Each query corresponds to a spatial region in the image
			- The attention between image feature F_i and P^2 query embeddings Q_r is performed to generate P^2 attention maps
				- \checkmark A_{ri} gives each query a $H \times W$ attention map indicating its corresponding spatial areas in the image
			- $\frac{1}{2}$. Making regions represent more fine-grained attributes at the sub-instance level

 \checkmark Sub-instance representations are desired for addressing the complex relationship and attribute descriptions in GRES

< Region-Image Cross Attention >

• GRES [1]

서강대한교 **SOGANG UNIVERSITY**

- ReLA: ReLAtionship modeling
	- ‐ Region-Language Cross Attention (RLA)
		- \mathbb{R}^n . RIA does not consider the relationship between regions and language information
		- **Modeling the region-region and region-language interactions**
		- \therefore Self-attention models the region-region dependency relationships
		- \therefore Cross-attention models the relationship between each word and each region
		- \mathbb{R} MLP fuses the interaction-aware region feature F_{r1} , language-aware region feature F_{r2} , and region image feature F'_r

Cross Attention

Language Features

 F_t

- GRES [1]
	- Ablation study
		- ‐ Fig. 6 shows the necessity and validity of gRefCOCO on the task of GRES
		- ‐ Design options of RIA in Table 2
			- **Model #1 makes the global image information less pronounced**
			- \therefore Compared to model #1, model #2 shows the importance of global context in visual feature encoding
			- $\frac{1}{2}$ Model #2 shows the effectiveness of the proposed adaptive region assigning
			- **Model #3** shows that explicit correspondence between queries and spatial image regions is beneficial to ReLA

Image (b)

Table 2. Ablation study of RIA design options.

Figure 6. Example predictions of the same model being trained on RefCOCO vs. gRefCOCO.

- GRES [1]
	- Ablation study
		- ‐ Design options of RLA in Table 3
			- $\frac{1}{2}$ #1 : RLA is replaced by point-wise multiplying region features and globally averaged language features
			- $\frac{1}{2}$ #2 shows the validity of region-word interaction modeling
			- $\frac{1}{2}$ #3 shows the importance of the region-region relationship
			- $\frac{1}{2}$ #4 : use the region-region and region-word relationship modeling together

 \overline{a}

- ‐ Number of region P in Table 4
	- \therefore Smaller P leads to coarser regions, which is not good for capturing fine-grained attributes
	- \therefore Larger P costs more resources and decreases the are of each region, making relationship learning difficult
	- $\frac{1}{2}$ In Fig.7, each region mask contains not only the instance of this region but also other instances with strong relationships

Predicted Minimap

"All three lunch boxes" < Visualization of region masks & predicted minimap >SOGANG UN

Table 3. Ablation study of RLA design options.									
#	Methods		P@0.7	P@0.8	P@0.9	cIoU	gIoU		
#1	Baseline		69.94	61.10	19.38	57.24	58.53		
#2	+ language att.		72.03	65.42	21.04	59.86	60.53		
#3	+ region att.		73.52	67.01	23.43	61.00	62.38		
#4	ReLA (ours)		74.20	68.33	24.68	62.42	63.60		
Table 4. Ablation study of Number of Regions									
	# Regions	P@0.7	P@0.8		P@0.9	cIoU	gIoU		
	4×4	68.48	60.25		$20.\overline{33}$	56.57	57.01		
8×8		72.36	66.85		23.56	59.74	61.23		
10×10		74.20	68.33		24.68	62.42	63.60		
12×12		74.14	67.56		23.90	62.02	63.50		

- GRES [1]
	- Results
		- ‐ Comparison with SOTA RES methods on gRefCOCO in Table 5
			- ҉ Training previous methods on gRefCOCO
			- $\frac{1}{2}$. For previous networks, output masks with less than 50 positive pixels are cleared to allnegative, for better no-target identification
			- \therefore Explicit relationship modeling greatly enhances model's performance
		- ‐ No-target identification performance in Table 6
			- \therefore The gRefCOCO does not significantly affect the model's targeting performance while being generalized to no-target samples
			- ҉ A dedicated no-target classifier of ReLA is desired
				- \checkmark ReLA-50 pix : ReLA with the no-target classifier disabled
			- $\frac{1}{2}$. There are around 40% of no-target samples are missed
				- \checkmark Many no-target expressions are very deceptive and similar with real instances in the

image

Table 5. Comparison on gRefCOCO dataset.

1000 σ , compained on give σ of the set								
Methods		val		testA	testB			
	cIoU gIoU		cIoU	gIoU	cIoU	gIoU		
MattNet [46]	47.51	48.24	58.66	59.30	45.33	46.14		
LTS [18]	52.30	52.70	61.87	62.64	49.96	50.42		
VLT [5]	52.51	52.00	62.19	63.20	50.52	50.88		
CRIS [39]	55.34	56.27	63.82	63.42	51.04	51.79		
LAVT [44]	57.64	58.40	65.32	65.90	55.04	55.83		
VLT+ReLA	58.65	59.43	66.60	65.35	56.22	57.36		
LAVT+ReLA	61.23	61.32	67.54	66.40	58.24	59.83		
ReLA (ours)	62.42	63.60	69.26	70.03	59.88	61.02		

- GRES [1]
	- Results
		- ‐ In Table 7, ReLAoutperforms other methods on classic RES
		- ‐ Qualitative results
			- ҉ Multiple targets of the same category or different categories in Image (a)

22

- \checkmark Showing the strong generalization ability
- \therefore Counting words and shared attributes in Image (b)
- ҉ Compound sentence in Image (c)
	- \checkmark Model can understand the excluding relationship

"Evervone"

Table 7. Results on classic RES in terms of cIoU. U: UMD split. G: Google split.

								$\overline{}$			
Methods	Visual	Textual	RefCOCO			RefCOCO+			G-Ref		
	Encoder	Encoder	val	test A	test B	val	test A	test B	val_{GD}	$test_{(U)}$	$val_{(G)}$
MCN [32]	Darknet53	bi-GRU	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	
VLT [5]	Darknet53	bi-GRU	67.52	70.47	65.24	56.30	60.98	50.08	54.96	57.73	52.02
$ReSTR$ [21]	$ViT-B$	Transformer	67.22	69.30	64.45	55.78	60.44	48.27		$\overline{}$	54.48
CRIS [39]	$CLIP-R101$	CLIP	70.47	73.18	66.10	62.27	68.08	53.68	59.87	60.36	$\overline{}$
LAVT $[44]$	Swin-B	BERT	72.73	75.82	68.79	62.14	68.38	55.10	61.24	62.09	60.50
VLT [6]	Swin-B	BERT	72.96	75.96	69.60	63.53	68.43	56.92	63.49	66.22	62.80
ReLA (ours)	Swin-B	BERT	73.82	76.48	70.18	66.04	71.02	57.65	65.00	65.97	62.70

Image (c)

"Everyone except the blurry guy'

Conclusion

- CGFormer^[1]
	- Contrastive Grouping with Transformer (CGFormer) achieves object-aware cross modal
	- Consecutive decoder achieves cross-level reasoning
- \bullet GRES $^{[2]}$
	- A new benchmark, called Generalized Referring Expression Segmentation (GRES), allows an arbitrary number of targets in the expressions
	- A baseline ReLA for GRES explicitly model the relationship between different image regions and words

