### vdsl 하계 세미나 Referring Expression Segmentation

**Sogang University** Dept. of Artificial Intelligence



Presented by 조유빈

### Outline

- Background
  - Referring Expression Segmentation
  - Transformer
- Referring Expression Segmentation
  - CGFormer <sup>[1]</sup>
    - Contrastive Grouping with Transformer for Referring Image Segmentation (CVPR 2023)
  - GRES <sup>[2]</sup>
    - GRES: Generalized Referring Expression Segmentation (CVPR 2023 Highlight)
- Conclusion



- Referring Expression Segmentation
  - Vision-Language multi-modal task
  - Target object를 지칭하는 language expression이 주어지면 이미지 내에서 해당 object만을 추출해내는 segmentation task
  - Challenging points
    - Target 객체와 다른 객체들과의 relationship 고려
    - 모호하고 복잡한 언어표현에 대한 알맞은 이해





- Transformer<sup>[1]</sup>
  - Self-attention
    - 단일 sequence 내의 서로 다른 요소들을 관련시켜 한 position의 representation을 계산
  - Why self-attention
    - 병렬적으로 동시에 연산 가능
    - 멀리떨어진 원소들 간의 path length 감소
      - ※ Long-term dependency problem 해결
      - 승 Global dependency 학습



Multi-Head Attention





- Transformer<sup>[1]</sup>
  - Encoder
    - Multi-head self-attention
      - Self-attention : Q, K, V의 출처가 같음 (encoder vector)
      - ☆ Multi-head : 벡터의 차원을 축소시키고 attention을 병렬적으로 수행
        - ✓ 다른 관점에서 정보들을 수집
        - ✓  $W^Q, W^K, W^V$ 는 각 attention head 마다 값이 다름





### Query / Key / Value embedding

SOGANG UNIVERSITY

- Transformer<sup>[1]</sup>
  - Decoder
    - Masked multi-head self-attention
      - ☆ Self-attention : O, K, V의 출처가 같음 (decoder vector)
      - ☆ 일부 원소는 매우 작은 음수 값을 곱해 masking
        - ✓ 실질적인 의미를 가진 단어가 아닌 <pad>인 경우
        - ✓ 현재 시점보다 미래에 있는 단어인 경우
    - Multi-head cross-attention (non self-attention)
      - Solution: Non self-attention: Q (decoder vector) / K, V (encoder vector)
      - 🔅 Decoder출력을 위해 encoder의 어떤 정보를 참고하면 좋을지 attention 수행





- CGFormer<sup>[1]</sup>
  - Existing methods fail to capture critical object-level information
    - Fail to focus on different regions and model their relations
    - Does not model the inherent differences between query vectors
      - :: Still focus on similar regions
  - Contrastive Grouping with Transformer (CGFormer) explicitly captures object-level information via token-based querying and grouping strategy
    - Different tokens focus on different visual regions without overlaps
    - Cooperate contrastive learning with the grouping strategy
  - Consecutive decoder achieve cross-level reasoning





- CGFormer<sup>[1]</sup>
  - Group transformer
    - Use learnable query tokens to represent object-level information
    - Update query tokens by alternately querying the linguistic features and grouping visual features
      - $\pm$ : Tokens capture the rich object characteristics relevant to the expression
  - Use contrastive learning to distinguish the referent token from other tokens
    - Maximizing the similarity between the referent token and the expression and minimizing the similarities between negative pairs



- CGFormer<sup>[1]</sup>
  - Group transformer layer
    - Load Block
      - : Classical cross-attention block
      - Separate Preload what linguistic information the query tokens should focus on at the current layer
    - Group Block
      - : Interact between vision and language
      - sign Group visual features from the feature map into linguistic-enhanced query tokens



- CGFormer<sup>[1]</sup>
  - Group transformer layer
    - Group Block
      - Embed the query tokens  $T_i$  and the vision feature map  $D_i$  into a common feature space
      - Calculate the similarities  $S_{pixel}$  between every pairwise features of the query tokens  $T'_i$ and vision features  $D'_i$  (eq.(1))
      - Compute the group to assign a segment token to by taking the one-hot operation of it argmax over all the groups (*hard assignment*)
        - ✓ Since the one-hot assignment operation via argmax is not differentiable, adopt a learnable Gumbel-softmax
        - ✓ Gradient of  $S_{mask}$  is equal to the gradient of  $S_{gumble}$ , which makes the Group Block differentiable and end-to-end trainable

$$S_{pixel} = \operatorname{norm}_2(T_i')\operatorname{norm}_2(D_i')^T, \tag{1}$$

$$S_{gumbel} = \operatorname{softmax}((S_{pixel} + G)/\tau), G: \operatorname{Gumbel}(0,1) \operatorname{distribution} (2)$$

*Hard assignment* 
$$\longrightarrow$$
  $S_{onehot} = \text{onehot}\left(\operatorname{argmax}_{N}(S_{gumbel})\right),$  (3)

$$S_{mask} = (S_{onehot})^T - \text{sg}(S_{gumbel}) + S_{gumbel}, \text{ sg} : \text{stop gradient}$$
(4)

$$T_i = MLP(S_{mask}D_i') + T_i'$$
<sup>(5)</sup>



- CGFormer<sup>[1]</sup>
  - Consecutive decoder
    - Previous works model the vision-language interaction at multiple levels in parallel and late integrate multi-level results
      - Fails to perform joint interaction across various levels
    - Consecutive decoder performs cross-level reasoning
      - Signation of the second second
      - The two-level cross-modal information will be consecutively propagated in multiple levels from bottom to up





- CGFormer<sup>[1]</sup>
  - Ablation study
    - The results of the method 2 and 3 suggest that simply adding tokens cannot boost performance
      - These tokens are likely to focus on similar information rather than distinct regions
    - Grouping strategy cooperated with contrastive loss to make tokens can focus on different regions
      - Signature Method 4 delivers a 4.35% improvement
    - Hard assignment helps to obtain a more refined grouping
      - Signature Method 5 achieves an improvement of 1.63%
    - Method 7 shows the effectiveness of the consecutive decoder
    - Compared to method 8, method 7 validates the necessity of the proposed contrastive grouping

|    | Method               | P@0.5 | P@0.7 | P@0.9 | oIoU  |
|----|----------------------|-------|-------|-------|-------|
| 1  | baseline             | 75.31 | 61.48 | 16.85 | 65.70 |
| 2  | 1+one token          | 77.28 | 64.94 | 19.47 | 66.39 |
| 3  | 1+N tokens           | 77.70 | 65.12 | 19.44 | 66.46 |
| 4  | 3+grouping           | 83.94 | 72.09 | 23.43 | 70.81 |
| 5  | 4+hard assignment    | 84.59 | 74.92 | 33.75 | 72.44 |
| 6  | 5+multi-scale        | 85.80 | 76.31 | 35.35 | 73.28 |
| 7  | 5+CD (ours full)     | 87.23 | 78.69 | 38.77 | 74.75 |
| 8  | VLT(Swin-B+BERT)*    | 83.24 | 72.81 | 24.64 | 70.89 |
| 9  | w/o cos              | 85.64 | 76.23 | 33.96 | 73.37 |
| 10 | w/o learnable $\tau$ | 86.14 | 76.99 | 36.48 | 73.50 |



Table 3. Ablation study on the validation set of RefCOCO. CD: Consecutive Decoder. cos: cosine similarity operation.  $\tau$ : learnable parameter in Gumble Softmax. Results with \* refer to [62].

### • CGFormer<sup>[1]</sup>

### Results

|       | Mathod       |       | RefCOCO | )      | RefCOCO+ |        |        | G-Ref |        |       | ReferIt |
|-------|--------------|-------|---------|--------|----------|--------|--------|-------|--------|-------|---------|
|       | Wiethou      | val   | test A  | test B | val      | test A | test B | val-U | test-U | val-G | test    |
|       | DMN [40]     | 49.78 | 54.83   | 45.13  | 38.88    | 44.22  | 32.29  | -     | -      | 36.76 | 52.81   |
|       | MCN [37]     | 62.44 | 64.20   | 59.71  | 50.62    | 54.99  | 44.69  | 49.22 | 49.40  | -     | -       |
|       | CGAN [36]    | 64.86 | 68.04   | 62.07  | 51.03    | 55.51  | 44.06  | 51.01 | 51.69  | 46.54 | -       |
| mIoU  | LTS [23]     | 65.43 | 67.76   | 63.08  | 54.21    | 58.32  | 48.02  | 54.40 | 54.25  | -     | -       |
|       | VLT [12]     | 65.65 | 68.29   | 62.73  | 55.50    | 59.20  | 49.36  | 52.99 | 56.65  | 49.76 | -       |
|       | CRIS [51]    | 70.47 | 73.18   | 66.10  | 62.27    | 68.08  | 53.68  | 59.87 | 60.36  | -     | -       |
|       | Our CGFormer | 76.93 | 78.70   | 73.32  | 68.56    | 73.76  | 61.72  | 67.57 | 67.83  | 65.79 | 66.42   |
|       | RRN [26]     | 55.33 | 57.26   | 53.93  | 39.75    | 42.15  | 36.11  | -     | -      | 36.45 | 63.63   |
|       | MAttNet [64] | 56.51 | 62.37   | 51.70  | 46.67    | 52.39  | 40.08  | 47.64 | 48.61  | -     | -       |
|       | CMSA [63]    | 58.32 | 60.61   | 55.09  | 43.76    | 47.60  | 37.89  | -     | -      | 39.98 | 63.80   |
|       | CMPC [19]    | 61.36 | 64.53   | 59.64  | 49.56    | 53.44  | 43.23  | -     | -      | 49.05 | 65.53   |
| -1-11 | LSCM [20]    | 61.47 | 64.99   | 59.55  | 49.34    | 53.12  | 43.50  | -     | -      | 48.05 | 66.57   |
| 0100  | CEFNet [14]  | 62.76 | 65.69   | 59.67  | 51.50    | 55.24  | 43.01  | 51.93 | -      | -     | 66.70   |
|       | BUSNet [61]  | 63.27 | 66.41   | 61.39  | 51.76    | 56.87  | 44.13  | -     | -      | 50.56 | -       |
|       | ReSTR [25]   | 67.22 | 69.30   | 64.45  | 55.78    | 60.44  | 48.27  | 54.48 | -      | -     | -       |
|       | LAVT [62]    | 72.73 | 75.82   | 68.79  | 62.14    | 68.38  | 55.10  | 61.24 | 62.09  | 60.50 | -       |
|       | Our CGFormer | 74.75 | 77.30   | 70.64  | 64.54    | 71.00  | 57.14  | 64.68 | 65.09  | 62.51 | 73.36   |



Figure 5. Visualization of grouping results for (a) different tokens (in different colors), (b) the referent token in three stages and (c) segmentation results of unseen objects.





- GRES [1]
  - 기존 referring expression segmentation에서는 single target object만을 지칭하는 language expression으로 구성
    - Multi-target이나 no-target에 대한 expression은 고려되지 않음
  - 본 논문에서는 새로운 데이터셋인 generalized referring expression segmentation (GRES)을 제안
    - Single-target, multi-target, no-target에 대한 expressions를 포함
    - Enhances the model's reliability and robustness to realistic scenarios where any type of expression can occur unexpectedly



< RES와 GRES 비교 >

- GRES [1]
  - Features of multi-target samples
    - Usage of counting expressions (ex. two people)
      - : The model must be able to differentiate cardinal numbers from ordinal numbers
    - Compound sentence structures without geometrical relation (ex. and, except, with, or)
      - Require the model to understand the long-range dependencies of both the image and sentence
    - Domain of attributes (ex. *Right* lady in *blue* and kid in *white*)
      - Require the model to have a deeper understanding of all the attributes and map the relationship of these attributes to their corresponding objects
    - More complex relationships
      - Require the model to have a deep understanding of all instances and their interactions in the image and expression
  - Rules for no-target samples to keep the dataset at a reasonable difficulty
    - The expression cannot be totally irrelevant to the image
    - The annotators could choose a deceptive expression drawn from other images















Image (a) i.

i. "The **two** people on the far left"

ii. "Everyone except the kid in white"

Image (b)

passengers on it"

ii. "The bike that has two passengers and its driver"

- GRES <sup>[1]</sup>
  - Overall architecture of the proposed baseline model for GRES
    - Modeling the interaction among regions in the image
      - Different from previous works using hard-split, regions are not predefined by using learnable queries
    - For the  $n^{th}$  regions, scalar  $x_r^n$  indicates its probability of containing targets
    - Region filter  $F_f$  is multiplied with the mask features  $F_m$  to generate the region mask  $M_r$
    - Outputs : segmentation mask *M* & no-target label *E*

::: If E is predicted to be positive, the output mask M will be set to empty



• GRES <sup>[1]</sup>

Transformer

Encoder

Pixel

Decoder

- ReLA: ReLAtionship modeling
  - Region-Image Cross Attention (RIA)
    - Flexibly collects region image features
    - $\therefore$  Using  $P^2$  learnable Region-based Queries supervised by the minimap
      - $\checkmark$  Each query corresponds to a spatial region in the image
    - The attention between image feature  $F_i$  and  $P^2$  query embeddings  $Q_r$  is performed to generate  $P^2$  attention maps
      - ✓  $A_{ri}$  gives each query a  $H \times W$  attention map indicating its corresponding spatial areas in the image

✓ Sub-instance representations are desired for addressing the complex relationship

Weighted

Sum

Signal Making regions represent more fine-grained attributes at the sub-instance level

Region Masks M



Mask Features I



< Region-Image Cross Attention >

• GRES <sup>[1]</sup>

SOGANG UNIVERSITY

- ReLA: ReLAtionship modeling
  - Region-Language Cross Attention (RLA)
    - RIA does not consider the relationship between regions and language information
    - Modeling the region-region and region-language interactions
    - Self-attention models the region-region dependency relationships
    - Cross-attention models the relationship between each word and each region
    - Solution MLP fuses the interaction-aware region feature  $F_{r1}$ , language-aware region feature  $F_{r2}$ , and region image feature  $F'_r$





< Region-Language Cross Attention >

- GRES <sup>[1]</sup>
  - Ablation study
    - Fig. 6 shows the necessity and validity of gRefCOCO on the task of GRES
    - Design options of RIA in Table 2
      - Solution Model #1 makes the global image information less pronounced
      - Sector Compared to model #1, model #2 shows the importance of global context in visual feature encoding
      - Signature Model #2 shows the effectiveness of the proposed adaptive region assigning
      - Solution: Model #3 shows that explicit correspondence between queries and spatial image regions is beneficial to ReLA



Image (b)

"the bed with red sheet"

### Table 2. Ablation study of RIA design options.

|    |                     | j     |       |       | L     |       |
|----|---------------------|-------|-------|-------|-------|-------|
| #  | Methods             | P@0.7 | P@0.8 | P@0.9 | cIoU  | gIoU  |
| #1 | Hard split, input   | 63.02 | 59.81 | 19.26 | 54.43 | 55.34 |
| #2 | Hard split, decoder | 70.34 | 65.23 | 21.47 | 60.08 | 60.93 |
| #3 | w/o minimap         | 72.19 | 66.02 | 21.07 | 61.30 | 62.06 |
| #4 | ReLA (ours)         | 74.20 | 68.33 | 24.68 | 62.42 | 63.60 |



Figure 6. Example predictions of the same model being trained on RefCOCO *vs.* gRefCOCO.

- GRES<sup>[1]</sup>
  - Ablation study
    - Design options of RLA in Table 3
      - #1 : RLA is replaced by point-wise multiplying region features and globally averaged language features
      - #2 shows the validity of region-word interaction modeling
      - #3 shows the importance of the region-region relationship

Predicted Minimap

- #4 : use the region-region and region-word relationship modeling together
- Number of region P in Table 4
  - Smaller P leads to coarser regions, which is not good for capturing fine-grained attributes
  - Larger P costs more resources and decreases the are of each region, making relationship learning difficult
  - E In Fig.7, each region mask contains not only the instance of this region but also other instances with strong relationships





'All three lunch boxes" < Visualization of region masks & predicted minimap >

| Table 5. Adiation study of RLA design options. |               |          |       |        |       |       |       |  |  |  |
|------------------------------------------------|---------------|----------|-------|--------|-------|-------|-------|--|--|--|
| #                                              | Method        | s        | P@0.7 | P@0.8  | P@0.9 | cIoU  | gIoU  |  |  |  |
| #1                                             | Baseline      | e        | 69.94 | 61.10  | 19.38 | 57.24 | 58.53 |  |  |  |
| #2                                             | + langu       | age att. | 72.03 | 65.42  | 21.04 | 59.86 | 60.53 |  |  |  |
| #3                                             | + regior      | n att.   | 73.52 | 67.01  | 23.43 | 61.00 | 62.38 |  |  |  |
| #4                                             | ReLA (        | ours)    | 74.20 | 68.33  | 24.68 | 62.42 | 63.60 |  |  |  |
| Table 4. Ablation study of Number of Regions   |               |          |       |        |       |       |       |  |  |  |
| # Regions P@0.                                 |               |          | P@(   | 0.8 P@ | @0.9  | cIoU  | gIoU  |  |  |  |
| 4 × 4 68.48                                    |               | 68.48    | 60.2  | 25 20  | ).33  | 56.57 | 57.01 |  |  |  |
| 8                                              | 3×8           | 72.36    | 66.   | 85 23  | 3.56  | 59.74 | 61.23 |  |  |  |
| $10 \times 10$                                 |               | 74.20    | 68.   | 33 24  | 4.68  | 62.42 | 63.60 |  |  |  |
| 12                                             | $2 \times 12$ | 74.14    | 67.   | 56 23  | 3.90  | 62.02 | 63.50 |  |  |  |

- GRES <sup>[1]</sup>
  - Results
    - Comparison with SOTARES methods on gRefCOCO in Table 5
      - Section Training previous methods on gRefCOCO
      - For previous networks, output masks with less than 50 positive pixels are cleared to allnegative, for better no-target identification
      - Explicit relationship modeling greatly enhances model's performance
    - No-target identification performance in Table 6
      - The gRefCOCO does not significantly affect the model's targeting performance while being generalized to no-target samples
      - Search A dedicated no-target classifier of ReLA is desired
        - ✓ ReLA-50pix : ReLA with the no-target classifier disabled
      - $\pm$  There are around 40% of no-target samples are missed
        - $\checkmark$  Many no-target expressions are very deceptive and similar with real instances in the

image

Table 5. Comparison on gRefCOCO dataset.

| Bit for the grant of grant of a database |       |       |       |       |       |       |  |  |  |
|------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| Mathada                                  | v     | al    | tes   | stA   | testB |       |  |  |  |
| wiethous                                 | cIoU  | gIoU  | cIoU  | gIoU  | cIoU  | gIoU  |  |  |  |
| MattNet [46]                             | 47.51 | 48.24 | 58.66 | 59.30 | 45.33 | 46.14 |  |  |  |
| LTS [18]                                 | 52.30 | 52.70 | 61.87 | 62.64 | 49.96 | 50.42 |  |  |  |
| VLT [5]                                  | 52.51 | 52.00 | 62.19 | 63.20 | 50.52 | 50.88 |  |  |  |
| CRIS [39]                                | 55.34 | 56.27 | 63.82 | 63.42 | 51.04 | 51.79 |  |  |  |
| LAVT [44]                                | 57.64 | 58.40 | 65.32 | 65.90 | 55.04 | 55.83 |  |  |  |
| VLT+ReLA                                 | 58.65 | 59.43 | 66.60 | 65.35 | 56.22 | 57.36 |  |  |  |
| LAVT+ReLA                                | 61.23 | 61.32 | 67.54 | 66.40 | 58.24 | 59.83 |  |  |  |
| ReLA (ours)                              | 62.42 | 63.60 | 69.26 | 70.03 | 59.88 | 61.02 |  |  |  |

| Table 6  | No_target | results | comparison | on | oRefCOCO | dataset  |
|----------|-----------|---------|------------|----|----------|----------|
| Table 0. | no-target | resuits | comparison | on | gReiCoco | ualaset. |

| Va     | al                                                               | tes                                                                                                                                                                                       | tA                                                                                                                                                                                                                                                                                         | testB                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| N-acc. | N-acc. T-acc. N-acc. T-ac                                        |                                                                                                                                                                                           | T-acc.                                                                                                                                                                                                                                                                                     | N-acc.                                                                                                                                                                                                                                                                                                                                                                            | T-acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 41.15  | 96.13                                                            | 44.04                                                                                                                                                                                     | 97.56                                                                                                                                                                                                                                                                                      | 41.32                                                                                                                                                                                                                                                                                                                                                                             | 95.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 47.17  | 95.72                                                            | 48.74                                                                                                                                                                                     | 95.86                                                                                                                                                                                                                                                                                      | 47.82                                                                                                                                                                                                                                                                                                                                                                             | 94.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 49.32  | 96.18                                                            | 49.25                                                                                                                                                                                     | 95.08                                                                                                                                                                                                                                                                                      | 48.46                                                                                                                                                                                                                                                                                                                                                                             | 95.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 49.96  | 96.28                                                            | 51.36                                                                                                                                                                                     | 96.35                                                                                                                                                                                                                                                                                      | 49.24                                                                                                                                                                                                                                                                                                                                                                             | 95.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 56.37  | 96.32                                                            | 59.02                                                                                                                                                                                     | 97.68                                                                                                                                                                                                                                                                                      | 58.40                                                                                                                                                                                                                                                                                                                                                                             | 95.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|        | va<br>N-acc.<br>41.15<br>47.17<br>49.32<br>49.96<br><b>56.37</b> | val           N-acc.         T-acc.           41.15         96.13           47.17         95.72           49.32         96.18           49.96         96.28           56.37         96.32 | val         tes           N-acc.         T-acc.         N-acc.           41.15         96.13         44.04           47.17         95.72         48.74           49.32         96.18         49.25           49.96         96.28         51.36           56.37         96.32         59.02 | val         testA           N-acc.         T-acc.         N-acc.         T-acc.           41.15         96.13         44.04         97.56           47.17         95.72         48.74         95.86           49.32         96.18         49.25         95.08           49.96         96.28         51.36         96.35           56.37         96.32         59.02         97.68 | val.         testA         test           N-acc.         T-acc.         N-acc.         T-acc.           41.15         96.13         44.04         97.56         41.32           47.17         95.72         48.74         95.86         47.82           49.32         96.18         49.25         95.08         48.46           49.96         96.28         51.36         96.35         49.24           56.37         96.32         59.02         97.68         58.40 |  |



- GRES <sup>[1]</sup>
  - Results
    - In Table 7, ReLA outperforms other methods on classic RES
    - Qualitative results
      - Signal Multiple targets of the same category or different categories in Image (a)

22

- $\checkmark$  Showing the strong generalization ability
- Section Counting words and shared attributes in Image (b)
- : Compound sentence in Image (c)
  - $\checkmark$  Model can understand the excluding relationship



"Everyone"

Table 7. Results on classic RES in terms of cIoU. U: UMD split. G: Google split.

| Methods     | Visual    | Textual     |       | RefCOCO |        | ]     | RefCOCO- | +      |                    | G-Ref   |                    |
|-------------|-----------|-------------|-------|---------|--------|-------|----------|--------|--------------------|---------|--------------------|
|             | Encoder   | Encoder     | val   | test A  | test B | val   | test A   | test B | val <sub>(U)</sub> | test(U) | val <sub>(G)</sub> |
| MCN [32]    | Darknet53 | bi-GRU      | 62.44 | 64.20   | 59.71  | 50.62 | 54.99    | 44.69  | 49.22              | 49.40   | -                  |
| VLT [5]     | Darknet53 | bi-GRU      | 67.52 | 70.47   | 65.24  | 56.30 | 60.98    | 50.08  | 54.96              | 57.73   | 52.02              |
| ReSTR [21]  | ViT-B     | Transformer | 67.22 | 69.30   | 64.45  | 55.78 | 60.44    | 48.27  | -                  | -       | 54.48              |
| CRIS [39]   | CLIP-R101 | CLIP        | 70.47 | 73.18   | 66.10  | 62.27 | 68.08    | 53.68  | 59.87              | 60.36   | -                  |
| LAVT [44]   | Swin-B    | BERT        | 72.73 | 75.82   | 68.79  | 62.14 | 68.38    | 55.10  | 61.24              | 62.09   | 60.50              |
| VLT [6]     | Swin-B    | BERT        | 72.96 | 75.96   | 69.60  | 63.53 | 68.43    | 56.92  | 63.49              | 66.22   | 62.80              |
| ReLA (ours) | Swin-B    | BERT        | 73.82 | 76.48   | 70.18  | 66.04 | 71.02    | 57.65  | 65.00              | 65.97   | 62.70              |



Image (c)

"Everyone except the blurry guy'

### Conclusion

- CGFormer<sup>[1]</sup>
  - Contrastive Grouping with Transformer (CGFormer) achieves object-aware cross modal
  - Consecutive decoder achieves cross-level reasoning
- GRES <sup>[2]</sup>
  - A new benchmark, called Generalized Referring Expression Segmentation (GRES), allows an arbitrary number of targets in the expressions
  - A baseline ReLA for GRES explicitly model the relationship between different image regions and words

