Local attention mechanism 2023년도 하계 세미나

Sogang University

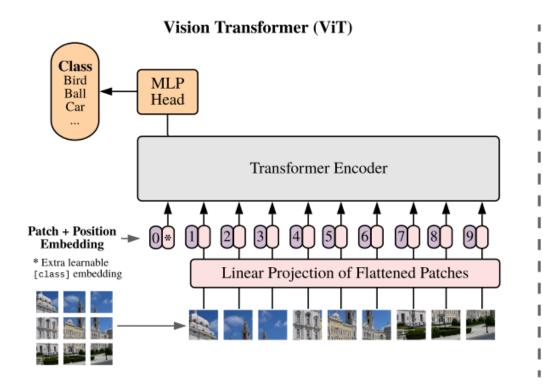
Vision & Display Systems Lab, Dept. of Electronic Engineering

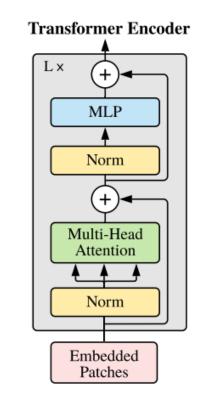
Outline

• Background

- Vision transformer
- Self attention
- Local attention
- Shifted window attention
- Neighborhood Attention Transformer
 - CVPR 2023 (60 citations)
- Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention
 - CVPR 2023
- Conclusion

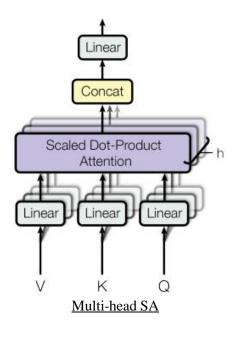
- Vision transformer¹⁾
 - Applies attention mechanism instead of CNNs to vision tasks
 - Divides input images into patches, linearize them, and uses attention to capture similarities
 - Utilizes global receptive field



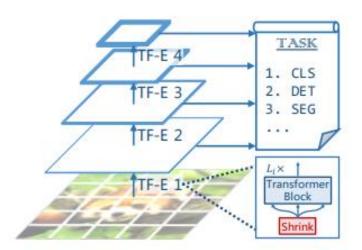


Vision transformer overview

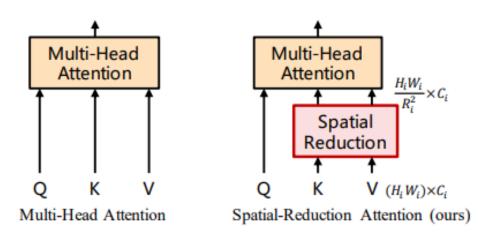
- Self attention(SA)¹⁾
 - Embeds query, key, and value via linear projection
 - Query: element for which we want to calculate attention
 - Key: other elements
 - Value: information associated with the elements
 - Calculates attention score using scaled similarity between query and key
 - Attention(Q, K, V) = softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right)V$
 - Recent studies focused on variances in receptive field size
 - High computation complexity problem



- Sparse global attention(SGA)¹⁾
 - Select sparse key and value positions from the feature map
 - Information from the selected input portions is than aggregated
 - Efficiency achieved by not considering the respective remaining parts
 - Tends to find optimal trade-off between the size of receptive field and computational cost

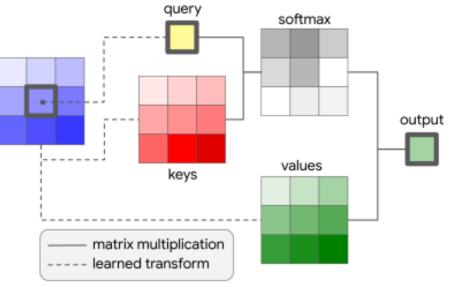


Pyramid vision transformer architecture



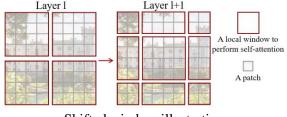
Multi-head SA vs Spatial reduction attention

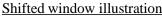
- Local attention(LA)¹⁾
 - Replace all spatial convolution operations to self attention layers
 - Constrains receptive field of each query to its neighboring pixels or windows
 - Inherits advantages from CNNs while reducing computational cost
 - Local inductive bias
 - Translation equivariance

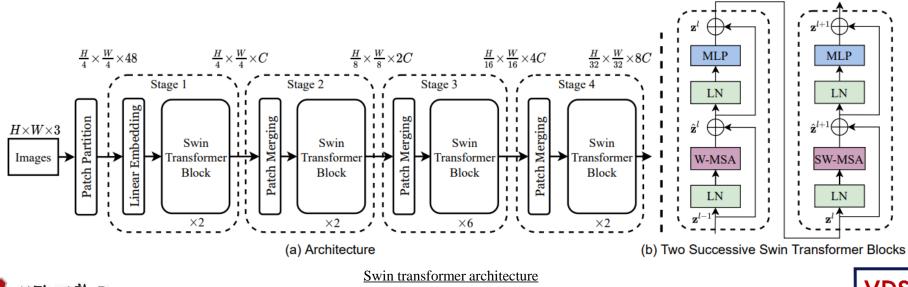


Local attention layer, spatial extent of k = 3

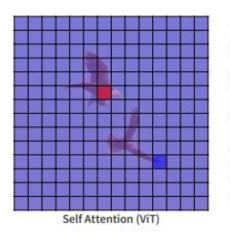
- Shifted window attention(WSA)¹⁾
 - Shifts window to utilize sparse global receptive field
 - Avoids situations where features from different windows become isolated
 - Facilitate connections across windows to model extra information
 - Achieves efficient yet effective feature extraction
 - Hierarchical feature extraction
 - Captures both global and local context
 - Linear computational complexity







- SA involves computational cost overload
- WSA lacks uniform attention span for each span
- Neighborhood attention(NA) localizes SA to each pixel's nearest neighbors
 - Utilizes local inductive biases
 - Maintains translational equivariance
 - Allows uniform receptive field growth without extra operations



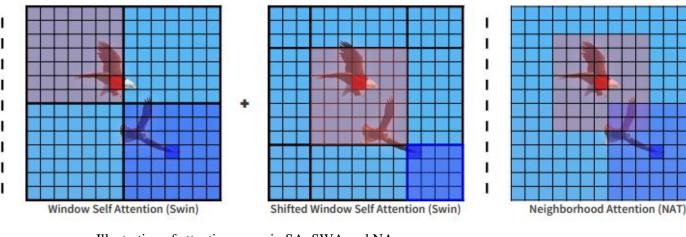


Illustration of attention spans in SA, SWA and NA

- Neighborhood attention
 - Dot product between the query of the input at the ith position and key of k-nearest neighbors
 - Value defined as ith input's k-nearest neighboring projections
 - Operation repeated for every pixel in the feature map
 - NA approaches SA as window size grows

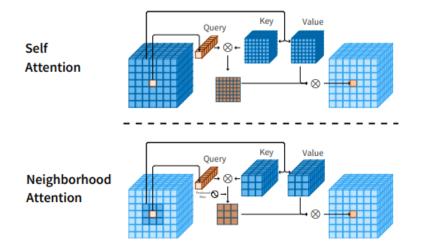


Illustration of query-key-value structure of SA and NA for a single pixel

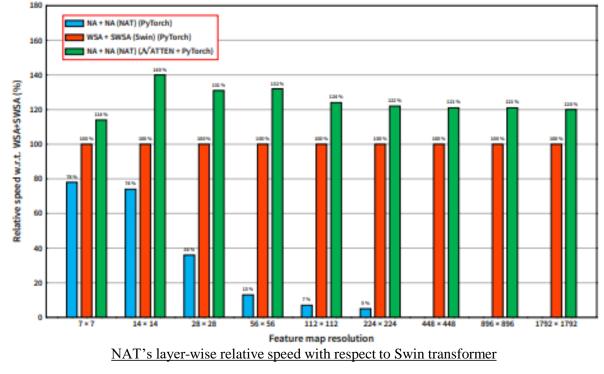
$$\mathbf{A}_{i}^{k} = \begin{bmatrix} Q_{i}K_{\rho_{1}(i)}^{T} + B_{(i,\rho_{1}(i))} \\ Q_{i}K_{\rho_{2}(i)}^{T} + B_{(i,\rho_{2}(i))} \\ \vdots \\ Q_{i}K_{\rho_{k}(i)}^{T} + B_{(i,\rho_{k}(i))} \end{bmatrix}$$

$$\mathbf{NA}_{k}(i) = softmax\left(\frac{\mathbf{A}_{i}^{k}}{\sqrt{d}}\right) \mathbf{V}_{i}^{k}$$

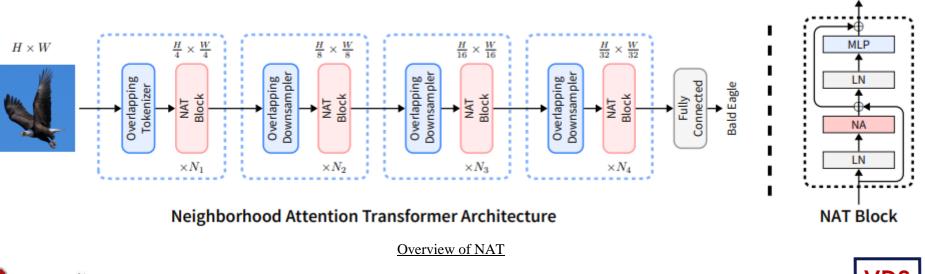
$$\mathbf{V}_{i}^{k} = \begin{bmatrix} V_{\rho_{1}(i)}^{T} & V_{\rho_{2}(i)}^{T} & \dots & V_{\rho_{k}(i)}^{T} \end{bmatrix}^{T}$$

Neighborhood attention mechanism

- NATTEN: Proposed Python package for efficient pixel-wise operation
 - Pixel-wise SA has not been well-explored due to computational cost
 - Matrix multiplication parallelizable in commonly used computational platforms(cuBLAS, cnDNN, etc)
 - Pixel-wise operation conducted with stacking number of highly inefficient operations
 - NATTEN allows NA-based models to run up to 40% faster than similar Swin counterparts



- Neighborhood attention transformer
 - Embeds inputs using 2 consecutive overlapping 3 x 3 convolutions with 2 x 2 strides
 - Establishes useful inductive biases
 - Resulting in a spatial size 1/4th the size of the input
 - Better trade-off between performance and computational cost
 - Consists of 4 levels followed by respective down-samplers that cut spatial size in half
 - Each level consists of multiple NAT blocks with multi-headed NA



- Complexity analysis
 - QKV linear projections \rightarrow each hwd^2 FLOPs in common \rightarrow total $3hwd^2$ FLOPs
 - SA has quadratic complexity for both attention weights and output $\rightarrow 2h^2w^2d$ FLOPs
 - WSA divides each QKV into $\frac{h}{k} \times \frac{w}{k}$ windows of shape $k \times k \rightarrow 2hwdk^2$ FLOPs
 - NA case \rightarrow 2*hwdk*² FLOPs

 $-\mathbb{A}_{i}^{k}$ of size $h \times w \times k^{2}$ and \mathbb{V}_{i}^{k} of size $h \times w \times k^{2} \times d \rightarrow 2hwdk^{2}$ FLOPs

- Convolutions $\rightarrow hwd^2k^2$ FLOPs
- WSA and NA have identical computational cost

Module	FLOPs	Memory
• Self Attn (SA)	$3hwd^2 + 2h^2w^2d$	$3d^2 + h^2w^2$
• Window Self Attn (WSA)	$3hwd^2 + 2hwdk^2$	$3d^2 + hwk^2$
• Neighborhood Attn (NA)	$3hwd^2 + 2hwdk^2$	$3d^2 + hwk^2$
Convolution	hwd^2k^2	d^2k^2

FLOPs and memory usage in different attention patterns and convolutions

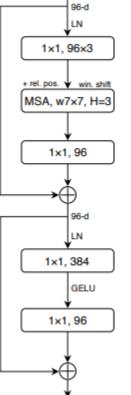
Variant	Layers	Dim × Heads		# of Params	FLOPs
• NAT-Mini	3, 4, 6, 5	32×2	3	20 M	2.7 G
 NAT-Tiny 	3, 4, 18, 5	32×2	3	28 M	4.3 G
 NAT-Small 	3, 4, 18, 5	32×3	2	51 M	7.8 G
• NAT-Base	3, 4, 18, 5	32×4	2	90 M	13.7 G

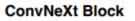
Comparison of NAT variants

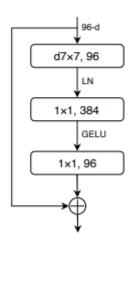
HASSANI, Ali, et al. Neighborhood attention transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. p. 6185-6194.
 LIU, Ze, et al. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021. p. 10012-10022.
 LIU, Zhuang, et al. A convnet for the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 11976-11986.

Neighborhood Attention Transformer¹⁾

- Baselines
 - Swin transformer²⁾
 - Shifted window attention
 - ConvNeXt³⁾
 - Pure convolutional network
 - Utilizes patch embedding in convolutional stem
 - Divides inputs into multiple paths
 - Adopts DW convolutions
 - Separate down-sampling layers







Block design for Swin transformer and ConvNeXt

• Experiments: classification

Model	# of Params	FLOPs	Thru. (imgs/sec)	Memory (GB)	Top-1 (%)
∘ NAT-M	20 M	2.7 G	2135	2.4	81.8
 Swin-T ConvNeXt-T NAT-T 	28 M	4.5 G	1730	4.8	81.3
	28 M	4.5 G	2491	3.4	82.1
	28 M	4.3 G	1541	2.5	83.2
 Swin-S ConvNeXt-S NAT-S 	50 M	8.7 G	1059	5.0	83.0
	50 M	8.7 G	1549	3.5	83.1
	51 M	7.8 G	1051	3.7	83.7
 Swin-B ConvNeXt-B NAT-B 	88 M	15.4 G	776	6.7	83.5
	89 M	15.4 G	1107	4.8	83.8
	90 M	13.7 G	783	5.0	84.3

ImageNet-1K classification performance

• Experiments: Object detection and instance segmentation

Backbone	# of Params	FLOPs	Thru. (FPS)	APb	AP ^b 50	AP ^b ₇₅	AP ^m	AP ^m ₅₀	AP ^m ₇₅			
Mask R-CNN - 3x schedule												
• NAT-M	40 M	225 G	54.1	46.5	68.1	51.3	41.7	65.2	44.7			
• Swin-T	48 M	267 G	45.1	46.0	68.1	50.3	41.6	65.1	44.9			
 ConvNeXt-T 	48 M	262 G	52.0	46.2	67.0	50.8	41.7	65.0	44.9			
○ NAT-T	48 M	258 G	44.5	47.7	69.0	52.6	42.6	66.1	45.9			
• Swin-S	69 M	359 G	31.7	48.5	70.2	53.5	43.3	67.3	46.6			
• NAT-S	70 M	330 G	34.8	48.4	69.8	53.2	43.2	66.9	46.5			
	(Cascade I	Mask R-	CNN	- 3x sch	edule						
• NAT-M	77 M	704 G	27.8	50.3	68.9	54.9	43.6	66.4	47.2			
• Swin-T	86 M	745 G	25.1	50.4	69.2	54.7	43.7	66.6	47.3			
 ConvNeXt-T 	86 M	741 G	27.3	50.4	69.1	54.8	43.7	66.5	47.3			
○ NAT-T	85 M	737 G	24.9	51.4	70.0	55.9	44.5	67.6	47.9			
• Swin-S	107 M	838 G	20.3	51.9	70.7	56.3	45.0	68.2	48.8			
 ConvNeXt-S 	108 M	827 G	23.0	51.9	70.8	56.5	45.0	68.4	49.1			
○ NAT-S	108 M	809 G	21.7	52.0	70.4	56.3	44.9	68.1	48.6			
• Swin-B	145 M	982 G	17.3	51.9	70.5	56.4	45.0	68.1	48.9			
 ConvNeXt-B 	146 M	964 G	19.5	52.7	71.3	57.2	45.6	68.9	49.5			
∘ NAT-B	147 M	931 G	18.6	52.5	71.1	57.1	45.2	68.6	49.0			

COCO object detection and instance segmentation performance

• Experiments: Semantic segmentation

Backbone	# of	FLOPs	Thru.	mI	oU
	Params		(FPS)	single scale	multi scale
∘ NAT-M	50 M	900 G	24.5	45.1	46.4
• Swin-T	60 M	946 G	21.3	44.5	45.8
 ConvNeXt-T 	60 M	939 G	23.3	46.0	46.7
∘ NAT-T	58 M	934 G	21.4	47.1	48.4
• Swin-S	81 M	1040 G	17.0	47.6	49.5
 ConvNeXt-S 	82 M	1027 G	19.1	48.7	49.6
∘ NAT-S	82 M	1010 G	17.9	48.0	49.5
• Swin-B	121 M	1188 G	14.6	48.1	49.7
 ConvNeXt-B 	122 M	1170 G	16.4	49.1	49.9
∘ NAT-B	123 M	1137 G	15.6	48.5	49.7

ADE20K semantic segmentation performance

• Experiments: ablation study

Attention							Thru.	
	Top-1	AP^B	AP ^m	mIoU	Params		(imgs/sec)	(GB)
• SWSA	81.3%	46.0	41.6	45.8	28.28 M	4.51 G	1730	4.8
• SASA	81.6%	46.0	41.4	46.4	28.27 M	4.51 G	2021	4.0
∘ NA	81.8%	46.2	41.5	46.4	28.28 M	4.51 G	2021	4.0

Performance comparison of different attention mechanisms

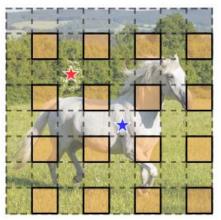
Attention					-			Thru. (imgs/sec)	•
• SWSA	Patch	2, 2, 6, 2	3	4	81.29	28.3 M	4.5	1730	4.8
∘ SWSA ∘ SWSA		2, 2, 6, 2 3, 4, 18, 5				30.3 M 27.9 M		1692 1320	4.8 3.0
• SASA	Conv	3, 4, 18, 5	2	3	82.54	27.9 M	4.3	1541	2.5
∘ NA	Conv	3, 4, 18, 5	2	3	83.20	27.9 M	4.3	1541	2.5

Ablation study on NAT with Swin-T as the baseline

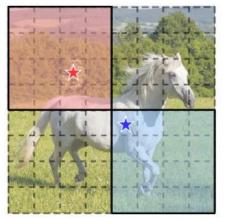
	Kernel ImageNet							
size	Top-1 (%)	Thru.	AP ^b	AP ^m	Thru.	mIoU	Thru.	
3×3	81.4	2015 imgs/sec	46.1	41.4	46.8 fps	46.0	23.6 fps	
5×5	81.6	$1810 {\rm \ imgs/sec}$	46.8	42.0	$45.5_{\rm \ fps}$	46.3	22.9 fps	
7×7	83.2	$1537 _{\text{imgs/sec}}$	47.7	42.6	$44.5_{\rm \ fps}$	48.4	$21.4 {}_{\rm fps}$	
9×9	83.1	$1253 {}_{\rm imgs/sec}$	48.5	43.3	$39.4_{\rm fps}$	48.1	$20.2 _{\rm fps}$	

NAT-Tiny performance with different kernel sizes

- Existing attention mechanisms to restrict receptive field size show distinct limitations
 - Sparse global attention
 - Inferior in capturing local features
 - Susceptible to key and value positions
 - sis informative features in other regions may be discarded
 - Window attention
 - Hinders cross-window communication
 - Involves extra designs such as window shifts
 - ${\rm s}{\rm (}{\rm s}{\rm Sets}$ restrictions on the model architecture

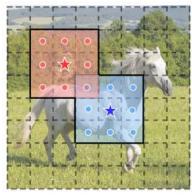


Sparse global attention



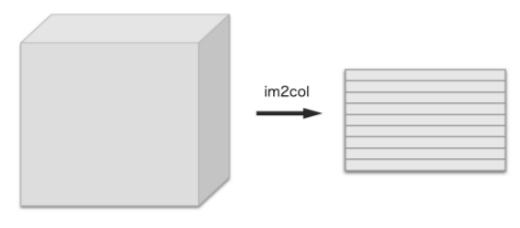
Window attention

- Local attention mechanism was proposed
 - Constrain receptive field of each query in its own neighboring pixels
 - Takes advantages from both convolution and attention
 - Local inductive bias from query-centric attention pattern
 - Translation equivariance like traditional convolution
 - Sets least restrictions on the model architecture design
- Limitations remaining
 - Huge increase in inference stage due to inefficient Im2Col function
 - Relies on CUDA kernels which restricts applicability on edge devices
- Importance on possessing both high efficiency and high generalizability



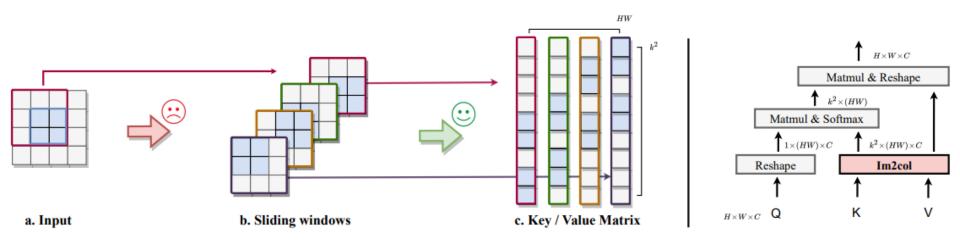
Local attention

- Im2Col function
 - Transforms multidimensional data into matrix type
 - Facilitate matrix operations
 - Enables efficient weighted multidimensional calculations
- Im2Col function is inefficient in terms of local attention
 - Generates the key and value matrix from column-based view
 - Each column represents local region



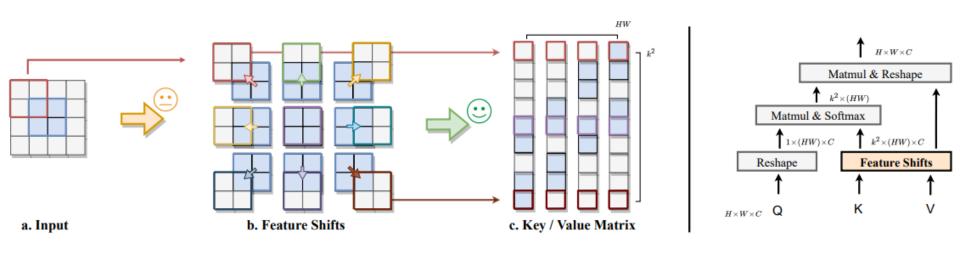
Im2Col function

- Difficulties in implementing local attention
 - Different receptive region for each query in the feature map
 - Im2Col function is adopted to sample keys and values for all respective queries
 - Local windows flattening into columns conducted independently by slicing the feature map
 - Disrupts data locality
 - Leads to huge time consumption



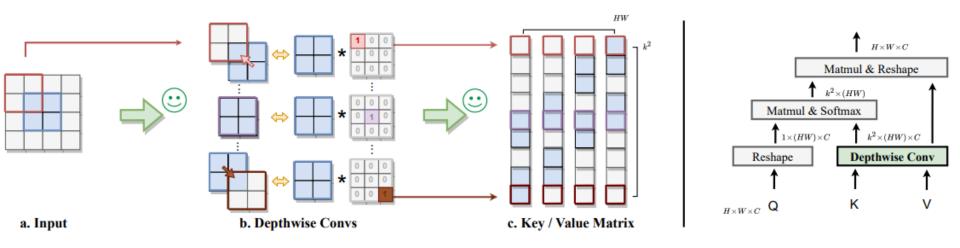
Local attention implementation with Im2Col function

- New perspective on Im2Col
 - Original column-based view
 - Each column corresponds to local window centered at particular query
 - Receptive windows of all queries are sampled and placed in order
 - New row-based view
 - Each row corresponds to shifting input towards certain direction
 - Flatten shifted features into rows and concatenate
 - Can recover the same dimensional output



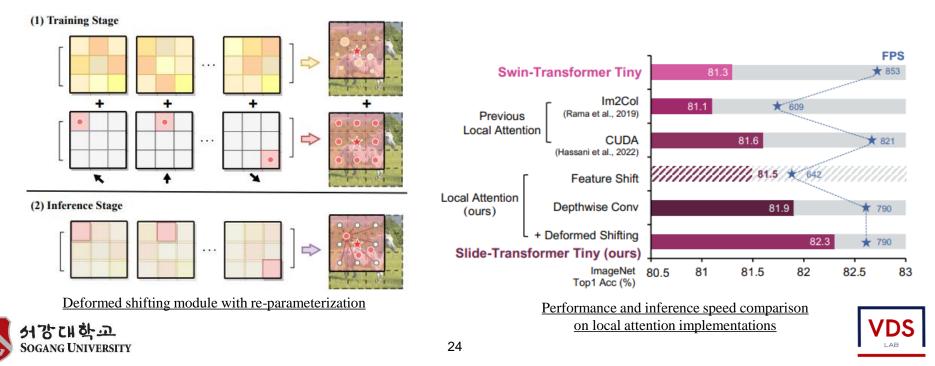
Local attention implementation with feature shifts

- Shift as depth-wise convolution
 - Simply shifting still involves inefficient slicing operations
 - Apply depth-wise convolution with designed kernels as a replacement for feature shift
 - Depth-wise convolutions can be boiled down to single-group convolution
 - Outputs equivalent to previous feature shifts
 - Avoids inefficient slicing operation
 - Optimized implementation of convolution operations on many edge devices

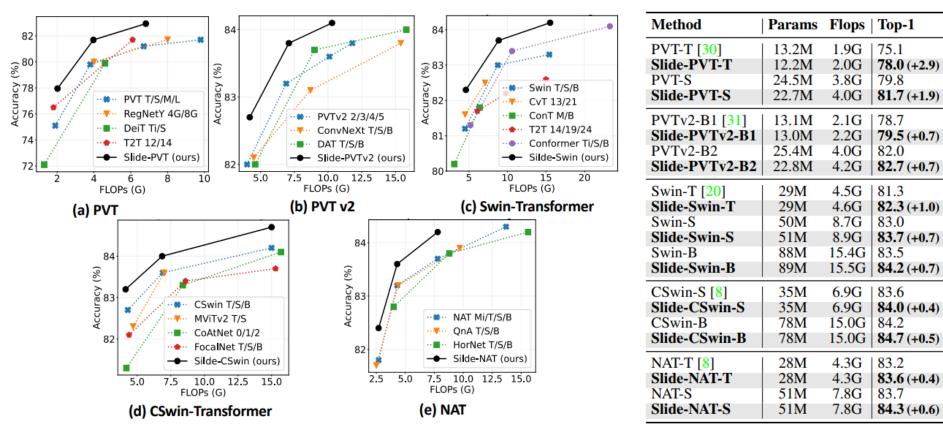


Local attention implementation with shift as depth-wise convolution

- Deformed shifting module
 - Designed kernel weights still constrain keys and values to the fixed neighboring positions
 - Makes it hard to capture diverse features
 - Deformed shifting module to handle the limitation
 - Further enhance flexibility of local attention
 - Parallel convolution path of learnable kernel parameters with random initialization
 - Use re-parameterization (merging) to transform two parallel paths into single convolution



• Experiments: classification



Comparisons of FLOPs and paramters against accuracy on ImageNet-1K

• Experiments: object detection and instance segmentation

		(a)) Mask R-C	NN Obj	ject Dete	ection &	Instan	ce Segm	entatio	n on CO	CO				
Method	FLOPs	#Param	Schedule	AP^b	AP_{50}^b	AP_{75}^b	AP_s^b	AP_m^b	AP_l^b	AP^m	AP_{50}^m	AP_{75}^m	AP_s^m	AP_m^m	AP_l^m
PVT-T	240G	33M	1x	36.7	59.2	39.3	21.6	39.2	49.0	35.1	56.7	37.3	19.5	37.4	48.5
Slide-PVT-T	219G	32M	1x	40.4	63.4	43.8	25.3	42.8	53.0	38.1	60.4	41.0	20.0	40.1	55.2
PVT-S	305G	44M	1x	40.4	62.9	43.8	22.9	43.0	55.4	37.8	60.1	40.3	20.4	40.3	53.6
Slide-PVT-S	269G	42M	1x	42.8	65.9	46.7	26.6	45.5	57.3	40.1	63.1	43.1	20.3	42.4	59.0
PVT-M	392G	64M	1x	42.0	64.4	45.6	24.4	44.9	57.9	39.0	61.6	42.1	21.3	42.0	55.2
Slide-PVT-M	357G	62M	1x	44.4	66.9	48.6	28.9	47.0	59.4	40.8	63.9	43.8	25.0	43.5	55.9
PVTv2-B1	244G	34M	1x	41.8	64.3	45.9	26.4	44.9	54.3	38.8	61.2	41.6	20.2	41.3	56.1
Slide-PVTv2-B1	222G	33M	1x	42.6	65.3	46.8	27.4	45.6	55.7	39.7	62.6	42.6	24.1	42.9	53.7
PVTv2-B2	309G	45M	1x	45.3	67.1	49.6	28.8	48.4	59.5	41.2	64.2	44.4	22.0	43.7	59.4
Slide-PVTv2-B2	274G	43M	1x	46.0	68.2	50.3	28.8	49.4	61.0	41.9	65.1	45.4	24.6	45.2	57.2
Swin-T	267G	48M	3x	46.0	68.1	50.3	31.2	49.2	60.1	41.6	65.1	44.9	25.9	45.1	56.9
Slide-Swin-T	268G	48M	3x	46.8	69.0	51.6	31.7	50.4	60.1	42.3	66.0	45.8	23.5	45.8	60.8
		(b) Ca	scade Mask	R-CNN	Object	Detecti	on & In	stance S	begment	tation or	COCO				
Method	FLOPs	#Param	Schedule	AP ^b	AP_{50}^b	AP_{75}^b	AP_s^b	AP_m^b	AP_l^b	AP^m	AP_{50}^m	AP_{75}^m	AP_s^m	AP_m^m	AP_l^m
Swin-T	745G	86M	3x	50.4	69.2	54.7	33.8	54.1	65.2	43.7	66.6	47.3	27.3	47.5	59.0
Slide-Swin-T	747G	86M	3x	51.1	69.8	55.4	35.2	54.4	65.8	44.3	67.4	48.0	28.0	48.0	59.2
Swin-S	838G	107M	3x	51.9	70.7	56.3	35.2	55.7	67.7	45.0	68.2	48.8	28.8	48.7	60.6
Slide-Swin-S	838G	107M	3x	52.5	71.3	57.2	35.6	56.1	68.0	45.4	68.9	49.6	29.1	49.2	60.6
Swin-B	981G	145M	3x	51.9	70.5	56.4	35.4	55.2	67.4	45.0	68.1	48.9	28.9	48.3	60.4
Slide-Swin-B	983G	145M	3x	52.7	71.2	57.2	37.0	56.1	68.0	45.5	68.8	49.6	30.1	48.8	60.9

COCO object detection performance

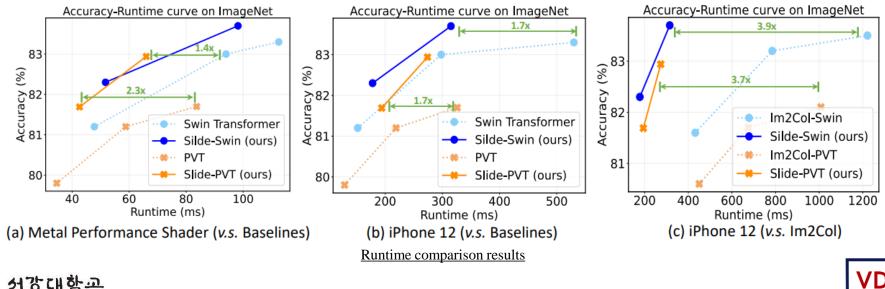
• Experiments: semantic segmentation

	Semantic Se	gmentatio	n on ADE20	K	
Backbone	Method	FLOPs	#Params	mIoU	mAcc
PVT-T	S-FPN	158G	17M	36.57	46.72
Slide-PVT-T	S-FPN	136G	16M	38.43	50.05
PVT-S	S-FPN	225G	28M	41.95	53.02
Slide-PVT-S	S-FPN	188G	26M	42.47	54.00
Swin-T	UperNet	945G	60M	44.51	55.61
Slide-Swin-T	UperNet	946G	60M	45.67	57.13
Swin-S	UperNet	1038G	81M	47.64	58.78
Slide-Swin-S	UperNet	1038G	81M	48.46	60.18

ADE20K semantic segmentation performance

• Experiments: Runtime comparison

SOGANG UNIVERSITY



• Experiments: ablation study

(a) Comparison on Swin-T Setting										
Local Attention	FLOPs	#Param	Acc.	FPS						
SASA [25]	4.5G	29M	81.6	644						
SAN [37]	4.5G	29M	81.4	670						
NAT [11]	4.5G	29M	81.8	821						
Ours	4.6G	30M	82.3	790						
(b) Comparison on NAT-Mini Setting										
(b) Co	omparison of	n NAT-Mini S	Setting							
(b) Co Local Attention	omparison of FLOPs	n NAT-Mini S #Param	Setting Acc.	FPS						
	-		1	FPS 791						
Local Attention	FLOPs	#Param	Acc.							
Local Attention SASA [25]	FLOPs 2.7G	#Param 20M	Acc. 81.2	791						

Comparison of different local attention modules on different model structures

Sta	ges w/ Sl	ide Atten	tion	FLOPs	#Param	Acc.	Diff.
Stage1	Stage2	Stage3	Stage4	1 LOI S		Acc.	Dill.
1				4.5G	29M	81.8	-0.5
1	1			4.6G	29M	82.3	Ours
1	1	1		4.6G	30M	82.2	-0.1
1	✓	✓	1	4.7G	30M	81.3	-1.0
	Swin-	T [20]		4.5G	29M	81.3	-1.0

Ablation study on applying slide attention on different stages

Conclusion

- Novel attention mechanisms to maximize efficiency by constraining receptive field size
 - Sparse global attention
 - Window attention
 - Local attention
 - Neighborhood Attention Transformer
 - : Localizes SA to each pixel's nearest neighbors
 - Strew Python package NATTEN
 - Slide Transformer
 - \lesssim New row-based perspective on Im2Col
 - st: Deformed shifting module

Thank you

