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Abstract

• Do you believe autonomous driving is feasible?

▪ I still believe that full autonomous driving is impossible

Object Detection

Depth Estimation Anomaly Detection

Segmentation
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Abstract

• [1] Planning-oriented Autonomous Driving [CVPR 2023 Best Paper]

▪ Perception + Prediction + Planning

[1] Hu, Yihan, et al. "Planning-oriented autonomous driving.“, (CVPR 2023)
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• Background

▪ Datasets

▪ Metrics

• [1] BEVFormer: Learning Bird's-Eye-View Representation from Multi-
Camera Images via Spatiotemporal Transformers [ECCV 2022]

▪ BEVFormer architecture

▪ Method

▪ Experiments

• [2] Planning-oriented Autonomous Driving [CVPR 2023 Best Paper]

▪ UniAD architecture 

▪ Method

▪ Experiment

[1] Li, Zhiqi, et al. "Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers.“, (ECCV 2022)

[2] Hu, Yihan, et al. "Planning-oriented autonomous driving.“, (CVPR 2023)

Outline
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• Datasets

▪ nuScene dataset

−Large-scale and diverse dataset for autonomous driving

−Real-world scenes, images, lidar sweeps and 3D bounding boxes 

▪ Waymo open dataset

−Also collected under various conditions and environments

−Various weather conditions, from urban city center to landscapes 

Background

< nuScene dataset > < Waymo open dataset >
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• Metrics 

▪ 3D detection

−mAP (mean Average Precision)

−mATE (mean Translation Error)

−mASE (mean Scale Error)

−mAOE (mean Orientation Error)

−mAVE (mean Velocity Error)

−mAAE (mean Attribute Error)

▪ Autonomous driving

−L2 error 

−Collision rate

Background

< 3D detection >
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• BEV (Bird’s Eye View) 

▪ Definition

−Viewpoint from a high altitude, as if observed by a bird in flight

−Representation of 3D space into 2D plane

▪ Advantages

−Cheaper than Lidar

−Capable of detecting features that can only be seen in images

BEVFormer

[1] Li, Zhiqi, et al. "Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers.“, (ECCV 2022)
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• BEV (Bird’s Eye View) 

▪ Conventional BEV framework

−Creating BEV features based on depth information

҉ Accuracy responds too sensitively to depth values or distributions

▪ Proposal BEV framework

−Designing depth-independent BEV feature to evade compounding errors

−Connecting temporal and spatial information

҉ Using sequential video data for perception

BEVFormer
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• BEVFormer

▪ BEV query

−To better represent BEV features

▪ Spatial cross-attention

−To efficiently capture spatial dependencies across different views

▪ Temporal self-attention

−To incorporate temporal information from previous frames

BEVFormer
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• BEV query

▪ Set of learnable parameters

−Positional embedding is added to the BEV queries

҉ Capturing the spatial information of each grid cell in the BEV plane

−Generating strong BEV features

҉ Crucial for accurate 3D bounding box prediction

BEVFormer
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• Spatial cross-attention

▪ Capturing spatial dependencies across different views

−Set reference view point each 𝒱ℎ𝑖𝑡 for 2D multi-camera features

−Cross-attention between the BEV features and the 6 multi views

BEVFormer

# of reference point

i𝒕𝒉 camera view featureBEV query
matched viewpoint Projection function 

(𝑸𝑷 to 2D)

Coordinate conversion (2D to 3D) 
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• Temporal self-attention

▪ Incorporate temporal information from previous frames

−Align the historical BEV features with the current BEV queries

҉ Historical BEV is aligned with the ego-vehicle at the center

−Temporal connections to verify the consistency of an object's identity

BEVFormer

Historical BEVCurrent BEV

∴ Paper set 𝑡 as 6
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• Experimental results

▪ Comparable performance with Lidar based models

▪ BEVFormer outperforms BEVFormer-S

− It indicates importance of considering temporal information

BEVFormer
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• Experimental results

BEVFormer
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• Limitations

▪ BEVFormer only adopts 3D detection task

−Not enough metrics for autonomous driving

▪ Still has a low FPS due to high latency

BEVFormer
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uniAD

[1] Hu, Yihan, et al. "Planning-oriented autonomous driving.“, (CVPR 2023)
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uniAD

• Autonomous driving systems

▪ Perception

−Bounding boxes, map segmentation

▪ Prediction

−Predicts other object’s occupancies

▪ Planning

−Plan the way where we go 

Perception Prediction Planning

Camera Input Trajectory
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uniAD

• Standalone models

▪ Typical industry solutions

▪ Pros

− Independent teams for modules developments

҉ Segmentation, object detection, depth estimation… 

▪ Cons

−Severe error accumulation

Camera Input Trajectory

mAP

mIoU

RMSE

.

.

.

.

.

.
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uniAD

• Multi-task frameworks

▪ Shared features for multiple tasks

▪ Pros

−Easily extend to multiple tasks

−Efficient architecture for compute 

▪ Cons

−Lack of tasks coordination

Camera Input Trajectory
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uniAD

• Previous end-to-end frameworks

▪ Introduced multiple tasks to assist planning

▪ Pros

−Better interpretability with multiple tasks

▪ Cons

−Lack some crucial components

҉ Occupancy module, prediction module …

Camera Input Trajectory
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uniAD

• Overall architecture 

▪ Unify full-stack Autonomous driving tasks 

▪ Coordinate all task towards safe planning

Camera Input Trajectory

✓ Entire pipeline connected by queries 

✓ Task coordinated with queries

✓ Interactions modeled by attention
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uniAD

• Perception

▪ TrackFormer – MOTR (ECCV 2022)

−End-to-end trainable tracking agents across time

▪ MapFormer – Panoptic SegFormer (CVPR 2022)

−Each query represents a map element 



23

uniAD

• Prediction

▪ MotionFormer

▪ OccFormer

✓ Relation modelings via attention

▪ Agent-agent  :  TrackFormer K,V

▪ Agent-map    :   MapFormer K,V

▪ Agent-goal     :   BEV feature B

✓ Predict occupancy as attention mask

✓ Cross-attention for interaction with agent 

and environment from BEV features
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uniAD

• Planning

▪ Planner

−Using ego-vehicle query from MotionFormer

҉ Interaction with other agents

−Collision optimization

҉ Steer the predicted trajectories clear of predicted occupancy
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uniAD

• Experimental results
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uniAD

• Experimental results

▪ Cruising around urban scene
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uniAD

• Experimental results

▪ Obstacle avoidance visualizations
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Conclusion

• BEVFormer

▪ Achieved comparable performance to Lidar-based models

▪ Only 3D object detection output and high latency 

• UniAD

▪ An end-to-end autonomous driving framework

−Pursuit of safe planning

▪ State-of-the-art (SOTA) performance with vision-only input
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Thank you for listening
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