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• Contrastive learning

▪ Meaningful representations for image or time series classification

▪ Less effectiveness for time series forecasting

−Task of predicting future state from history context

− Instance discrimination optimization that cannot be applied directly

▪ Generalization limits for different types of time series data

−High dependence on specific time series characteristics of the construction of positive and 

negative pairs

• SimTS, a simple representation learning approach for improving time series 

forecasting 

▪ Learning to predict the future from the past in the latent space

▪ No reliance on negative pairs or specific assumptions

Abstract
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• Contrastive learning

▪ A method of representation learning

▪ Representation learning through comparison between input samples

−Learning the representation space so that "similar" data is close and "different" data is far

−For multiple input pairs, the similarity is learned by label

Background
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• Contrastive learning

▪ Generation of input pairs through data augmentation

−Data augmentation in image domain

҉ Positive pair → data augmented on the same image

҉ Negative pair → data augmented on the different images

҉ Random crop, rotation, resizing, shifting, noising, blur, color distortion, perspective 

distortion

Background

Data Augmentation 𝑥

Positive Pairs Positive Pairs
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• Contrastive learning

▪ Generation of input pairs through data augmentation

−Data augmentation in time series domain

҉ Input-centered distribution

✓Positive pair → belonging to input-centered distribution, neighborhood

✓Negative pair → not belonging to input-centered distribution, non-neighborhood

Background

𝑥𝑡 𝑥𝑗𝑥𝑖

Positive Pairs
Negative Pairs

Distribution centered on input 𝑥𝑡



8

• Contrastive learning

▪ Generation of input pairs through data augmentation

−Data augmentation in time series domain

҉ Scaling, jittering, window slicing, time warping

҉ Random masking

҉ Random warping

҉ Random reordering

Background

Original Scaling Jittering Window slicing Time warping

Original Random masking Random warping Random reordering
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• Contrastive learning

▪ Learning representations close to positive samples and far from negative samples

−Well suited for classification tasks

҉ The resulting representation contains information to better distinguish different instances 

of the time series

− Ineffective for forecasting tasks

҉ Forecasting the future based on past data

▪ Negative sample methods of existing methods that are difficult to trust

−Time stamp difference,  different time stamp

Problem Formulation 

< Existing method of selecting negative pairs >
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• Key questions

▪ What is important for time series forecasting with contrastive learning?

▪ How can we adapt contrastive ideas more effectively to time series forecasting tasks? 

▪ Are the existing assumptions and techniques for constructing positive and negative pairs 

reasonable?

Introduction
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• Motivation

▪ What is important for time series forecasting with contrastive learning?

−Existing methods

҉ They ignore the possibility that a repeating patterns exist within a time series

҉ They disregard the possibility that distinct time series contain similar patterns

▪ In forecasting task, a good representation should effectively capture the temporal 

dependencies between past segments and future predictions.

▪ We emphasize that the temporal dependency has greater significance than the similarity 

between positive and negative pairs.

▪ Negative pairs inducing the issue of false repulsion

−Patterns that repeat across different samples

▪→We train an encoder to learn time series representations by predicting its future from 

historical segments in the latent space.

Proposed Method
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• SimTS: Simple Representation Learning for Time Series Forecasting

▪ Siamese neural network architecture

−Two identical networks sharing parameters

−History encoding path, future encoding path

▪ Multi-scale encoder network 𝐹𝜃

−Projecting raw features into a high dimensional space

−Multiple CNN blocks with different kernel sizes

▪ Prediction network 𝐺∅

− Input: last column of encoded history view

−Predicting future in latent space

▪ Cosine similarity loss

−Considering only positive samples

Proposed Method
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• SimTS

Proposed Method

▪ Objective

−Learning latent representation of history segment 

𝑋ℎ = 𝑥1, 𝑥2, … , 𝑥𝐾 , 0 < 𝐾(201) < 𝑇(402)

−Predicting future segment 𝑋𝑓 = 𝑥𝐾+1, 𝑥𝐾+2, … , 𝑥𝑇

▪ Multi-scale Encoder network 𝐹𝜃

− Inputs: history segment 𝑋ℎ,  future segment 𝑋𝑓

҉ Learning to map them to their latent representations 

𝑍ℎ, 𝑍𝑓

−History encoding path

҉ 𝑍ℎ = 𝐹𝜃 𝑋ℎ = 𝑧1
ℎ , 𝑧2

ℎ , … , 𝑧𝐾
ℎ ∈ 𝑅𝐶′×𝐾 , (𝐶′:320)

−Future encoding path

҉ 𝑍𝑓 = 𝐹𝜃 𝑋𝑓 = [𝑧𝐾+1
𝑓

, 𝑧𝐾+2
𝑓

, … , 𝑧𝑇
𝑓
] ∈ 𝑅𝐶′×(𝑇−𝐾)

history future



14

• SimTS

▪ Multi-scale Encoder network 𝐹𝜃

−Convolutional network with multiple filters that have various kernel sizes

−Extracting both local/global patterns 

−For a time series 𝑋 with length 𝐾, 𝑚 = 𝑙𝑜𝑔2𝐾 + 1 parallel convolution layers, 

kernel size 2𝑖−1 of 𝑖th convolution

҉ 𝐾 = 8, 16, 32, 64, …, → 𝑚 = 4, 5, 6, 7, …, 

→ kernel size = (1, 2, 4, 8), (1, 2, 4, 8, 16), …, 

−Average pooling of the last column of each CNN layer

Proposed Method

64 dim
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• SimTS

▪ Prediction network 𝐺∅

−Predicting future latent representations

− Input: last column of encoded history view 𝑍ℎ, 𝑧𝐾
ℎ

− መ𝑍𝑓 = 𝐺𝜙 𝑧𝐾
ℎ = [ Ƹ𝑧𝐾+1

𝑓
, Ƹ𝑧𝐾+2

𝑓
, … , Ƹ𝑧𝑇

𝑓
] ∈ 𝑅𝐶′×(𝑇−𝐾)

▪ Similarity

−Maximizing the similarity between predicted and 

encoded latent features

҉ Forcing them to get closer

҉ Learning historical representation that is informative for the future

҉ Regarding the predicted መ𝑍𝑓 and the encoded 𝑍𝑓 as the positive pair

҉ Cosine similarity

✓𝑆𝑖𝑚 መ𝑍𝑓 , 𝑍𝑓 = −
1

𝑇−𝐾
σ𝑖=𝐾+1
𝑇 Ƹ𝑧𝑖

𝑓

Ƹ𝑧𝑖
𝑓

2

∙
𝑧𝑖
𝑓

𝑧𝑖
𝑓

2

,     ∙ 2: 𝑙2-norm      

Proposed Method

Predicted future 

latent representation

Encoded future 

latent representation

Latent representation 

of history
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• SimTS

▪ Stop-gradient Operation

−Using same encoder for both history and future encoding path

҉ Problem of optimizing the encoder by pushing encoded 

future 𝑍𝑓 towards predicted future መ𝑍𝑓

−Applying it to future encoding path

҉ መ𝑍𝑓 can only move towards 𝑍𝑓 in the latent space

−Encoder network

҉ Unable to receive updates from future representations 𝑍𝑓

҉ Constrained to only optimize the history representation 

𝑍ℎ and its prediction መ𝑍𝑓

−Loss function

҉ 𝐿𝜃,𝜙 𝑋ℎ, 𝑋𝑓 = 𝑆𝑖𝑚 𝐺𝜃 𝐹𝜃 𝑋ℎ , 𝐹𝑠𝑔 𝜃 𝑋𝑓 = 𝑆𝑖𝑚( መ𝑍𝑓 , 𝑠𝑔(𝑍𝑓))

Proposed Method

history future
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• Experimental setup

▪ Input size

−Length T = 402

−First 201 corresponding to history view, subsequent 201 corresponding to future view

−Projected to a 64-dim latent space in projection

−Projected to a 320-dim latent space in multi-scale encoder

▪ Datasets

−Electricity Transformer Temperature

҉ ETTh1, ETTh2, ETTm1, ETTm2

−Exchange-Rate

−Weather

▪ Training, validation, test sets in the ratio of 6:2:2

▪ 500 epoch, learning rate 0.001, batch size 8

Experimental Results
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Experimental Results
: using negative pairs

Scaling, shifting, jitteringRandom masking
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• Negative samples

▪ Required careful construction

▪ TS2Vec and CoST using negative pairs for contrastive learning with poor performance

−Selection of negative pairs may be inaccurate

Experimental Results
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• Stop-Gradient Operation

▪ SimTS: applying to future encoding path

▪ SimTS w/o SG: not applying to any path

▪ RevSimTS: applying to history encoding path

Experimental Results
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• SimTS for time series forecasting 

▪ Using a simple encoder to learn representations in latent space without negative pairs

• The effectiveness and generalizability of SimTS

• Our goal to challenge the assumptions and components that are widely used

• Current representation learning methods that cannot be universally applicable to 

different types of time series data

Conclusion
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Thanks!


	기본 구역
	슬라이드 1: Representation Learning for Time Series
	슬라이드 2: Outline
	슬라이드 3
	슬라이드 4: Abstract
	슬라이드 5: Background
	슬라이드 6: Background
	슬라이드 7: Background
	슬라이드 8: Background
	슬라이드 9: Problem Formulation 
	슬라이드 10: Introduction
	슬라이드 11: Proposed Method
	슬라이드 12: Proposed Method
	슬라이드 13: Proposed Method
	슬라이드 14: Proposed Method
	슬라이드 15: Proposed Method
	슬라이드 16: Proposed Method
	슬라이드 17: Experimental Results
	슬라이드 18: Experimental Results
	슬라이드 19: Experimental Results
	슬라이드 20: Experimental Results
	슬라이드 21: Conclusion
	슬라이드 22


