Interactive Human Generation

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented By 강찬희

Table of Contents

- Three-dimensional Reconstruction of Human Interactions (CVPR 2020)
 - Contribution
 - CHI3D, FlickrCI3D
- Generative Proxemics: A prior for 3D social Interactions from Images (arxiv)
 - Contribution
 - BUDDI
 - Proposed Method
 - Evaluation metrics

Three-dimensional Reconstruction of Human Interactions

- Contribution
 - Proposed models for interaction signature estimation (ISP)
 - Investigate correlations between contact detection, segmentation and 3d contact signature prediction in 3d reconstruction
 - Construct several large datasets for learning and evaluate 3d contact prediction and reconstruction methods. (CHI3D, FlickrCI3D)
 - -First datasets with ground-truth labels for the body regions in contact between humans

Three-dimensional Reconstruction of Human Interactions

- Closed Human Interactions 3D (CHI3D)
 - Environment setting
 - -10 motion cameras synchronized with 4 additional RGB cameras
 - In each recordings, one subject is motion tracked with a marker-based motion capture system
 - The second person is tracked using only RGB cameras
 - Contents
 - -TRAIN set : 3 pairs of subjects
 - -TEST set : 2 pairs of subjects
 - -4 different views
 - -900 x 900 resolution
 - -Camera parameters : extrinsics, intrinsics (one assuming image distortion, one ignoring it)

Three-dimensional Reconstruction of Human Interactions

- FlickrCI3D Classification
 - Dataset
 - -Images from the YFCC100M dataset (Images from Flickr by amateur photographers)
 - -55,095 images of 90,167 pairs of people in interaction scenarios
 - -Classified by annotators in 3 contact classes (trainset)
 - Si No Contact: 49,372 pairs
 - :: Uncertain contact: 17,197 pairs
 - :;: Contact: 14,733 pairs
- FlickrCI3D Signature
 - Dataset
 - -11,770 images of 14,866 pairs of people in contact with annotated contact signatures
 - Each contact signature represents a set of annotated correspondences between contact surfaces of two human bodies
 - -Correspondences are provided on both GHUM and SMPLX templates, between
 - Street IDS, Facet IDs, Body region IDs (75 regions)

• Generative Proxemics: A prior for 3D Social Interaction from Images

Contribution

- Reconstruct pseudo-ground truth 3D meshes of interacting people with an optimization approach using existing ground-truth contact map (FlickrCI3D signatures dataset)
- Model proxemics using a diffusion model that learns the joint distribution of two people in close social interaction directly in the SMPL-X parameter space
- Introduce a new optimization method that uses the diffusion prior to reconstruct two peopl in close proximity from a single image without any contact annotation

• Flow

- Optimization process to create 3D pseudo-ground truth data
 - -Use ground truth contact maps form the FlickrCI3D Signatures dataset
 - -2D image to 3D human interaction
- Train diffusion model that learns the 3D proxemics prior between two people
 - The output from optimization process is used as training data
 - -Random noise to 3D human interaction
- Reconstruction of two people in close proximity from images
 - Do not require any ground-truth contact maps
 - -Image to 3D human interaction

- Optimization process
 - Body model representation
 - -Use SMPL-X in baseline
 - -Additionally use SMIL to support producing meshes for infants and children (interpolation)

Input

- -Discrete human-human contact annotations
- -Detected 2D keypoints
- -Initial estimates for pose, orientation, shape and translation ($\theta_0, \phi_0, \beta_0, \gamma_0$)
- Initial estimates are provided from the output of BEV
- -Use least-square method to convert SMPL output from BEV to SMPL-X

- Optimization process
 - Binary contact map
 - -FlickrCI3D Signatures dataset divide the body into 75 regions and annotate their pairwise contact between both people.
 - -Each region r, roughly covers a similar surface of the body and is associated with SMPL-X faces f_r and vertices v_r
 - -3D contacts between meshes M^a , M^b are represented as a binary contact map $C \in \{0, 1\}^{75 \times 75}$

$$\mathcal{C}_{ij}^B = \begin{cases} 1, & \text{if } r_i \text{ of } M^a \text{ is in contact with } r_j \text{ of } M^b \\ 0, & \text{otherwise.} \end{cases}$$

- Two-stage approach
 - -First stage: optimize pose, shape and translation
 - Encourages contact between discretely annotated body regions
 - Stallow the bodies to intersect

- Optimization process
 - Two stage approach
 - -Second stage: use a loss term to resolve human-human intersection
 - The output of the first stage is usually close to the final pose with only slight intersections
 - Scoptimize only pose and translation
 - SFix the body shape
 - The objective function is:

$$L_{\text{fitting}} = \lambda_{J2D} \mathbf{E}_{J2D} + \lambda_{\bar{\theta}} \mathbf{E}_{\bar{\theta}} + \lambda_{\theta} \mathbf{E}_{\theta} + g + \lambda_{\beta} \mathbf{E}_{\beta} + \lambda_{\mathcal{C}^B} \mathbf{E}_{\mathcal{C}^B} + \lambda_{P} \mathbf{E}_{P}, \quad ,$$

 $E \in E_{J2D}$ (re-projection error), E_{θ} (prior on the initial pose), $E_{\overline{\theta}}$ (GMM pose prior), E_{β} (L2-prior)

S: In the first and second stage this objective function is used but with different active terms

- Optimization process
 - Objective function

$$L_{\text{fitting}} = \lambda_{J2D} \mathbf{E}_{J2D} + \lambda_{\bar{\theta}} \mathbf{E}_{\bar{\theta}} + \lambda_{\theta} \mathbf{E}_{\theta} + \lambda_{\beta} \mathbf{E}_{\beta} + \lambda_{\mathcal{C}^B} \mathbf{E}_{\mathcal{C}^B} + \lambda_{P} \mathbf{E}_{P},$$

 E_{J2D} (re-projection error), E_{θ} (prior on the initial pose), $E_{\overline{\theta}}$ (GMM pose prior), E_{β} (L2-prior)

-Discrete human-human contact loss

$$\mathbf{E}_{\mathcal{C}^B} = \sum_{i,j} \mathcal{C}^B_{ij} \min_{v \in \mathbf{v}_{r_i}, u \in \mathbf{v}_{r_j}} \|v - u\|^2$$

Signary contact map works like adjacency matrix

- Optimization process
 - Objective function

$$L_{\text{fitting}} = \lambda_{J2D} \mathbf{E}_{J2D} + \lambda_{\bar{\theta}} \mathbf{E}_{\bar{\theta}} + \lambda_{\theta} \mathbf{E}_{\theta} + \lambda_{\beta} \mathbf{E}_{\beta} + \lambda_{\mathcal{C}^B} \mathbf{E}_{\mathcal{C}^B} + \lambda_{P} \mathbf{E}_{P},$$

 $\in E_{J2D}$ (re-projection error), E_{θ} (prior on the initial pose), $E_{\overline{\theta}}$ (GMM pose prior), E_{β} (L2-prior)

-Interpenetration loss

$$\mathbf{E}_{P} = \sum_{v \in \mathbf{v}_{I}^{a}} \min_{u \in \mathbf{v}^{b}} \|v - u\|^{2} + \sum_{v \in \mathbf{v}_{I}^{b}} \min_{u \in \mathbf{v}^{a}} \|v - u\|^{2}$$

Sective in the second stage only

- SPushes inside vertices to the surface
- f_{I}^{a} denotes vertices of M^{a} intersecting the low-resolution mesh of M^{b}
- $:: V_I^b$ follows the same notation

- Unconditional Generative model train
 - Use Gaussian Diffusion to jointly learn parameter space of two human
 - -First diffusion ground truth $X_0 = [X^a, X^b]$, by uniformly sample a noise level *t* with noise $\epsilon_t \sim N(0, \sigma_t I)$
 - -Noise ground truth by $X_t = \alpha_t X_0 + \epsilon_t$
 - -Denoise with denoiser **D**, with transformer encoder
 - -Before passing it to transformer encoder embed model parameters and human identity $i \in i \in \{\phi, \theta, \beta, \gamma\}$: *i* indicates each parameters where $j \in \{a, b\}$ indicates each person $i \in f_{ij}$: linear layers that generate learnable embeddings

- Optimization with the Proxemics Prior
 - Generating human-human interaction from an image
 - -Use the diffusion model as a prior in optimization
 - Congruent to score distillation sampling in DreamFusion and Score Jacobian Chaining

$L_{\text{Optimization w. BUDDI}} = L_{\text{fitting}} + L_{\text{diffusion}}$

-Flows

- Since the SMPL-X parameters using BEV
- :: Optimize considering contact using $L_{fitting}$ (set $\lambda_{C^B}=0$)

✓Initial SMPL-X parameters(X_{no_grad})predicted by BEV does not have gradients

 \checkmark Add noise to initial parameters : $X_t = \alpha_t X_{no_grad} + \epsilon_t$

✓ Denoise with denoiser using loss $L_{diffusion}$

- Only use terms that incorporate parameters we optimize in both stages
- The shape and orientation loss weights are set to zero

- Evaluation Metrics
 - Use standard evaluation metrics from the human pose estimation literature
 - MPJPE, PA-MPJPE
 - Propose a new metric
 - -PCC (Percentage of Correct Contact points)
 - Given two meshes and a contact map, compute pairwise vertex-to-vertex distance
 - Scomputed on annotated contact regions and consider pair to be correct when the distance is less than threshold

References

- Three-dimensional Reconstruction of Human Interactions (CVPR 2020)
- Generative Proxemics: A prior for 3D social Interactions from Images (arxiv)

감사합니다

