2023 동계 세미나 Blind Super Resolution

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented by 조영수

Outline

- Introduction
- Background
 - Blind Super Resolution
 - Face Restoration
- Method
 - PDM-SR
 - Learning the Degradation Distribution for Blind Image Super-Resolution (CVPR 2022)
 - ReDegNet
 - From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution (ECCV 2022)
- Results
- Conclusion

Introduction

- Super Resolution
 - Restore High-Resolution (HR) image from Low-Resolution (LR) image
 - Ill-posed problem
 - Multiple solution could be obtained from a pixel of low-resolution image
 - According to the number of LR image
 - SISR (Single Image Super Resolution) / MISR (Multi Image Super Resolution)

Super Resolution

Figure 1: Example of Single Image Super Resolution

Transformer

Background

- Blind Super Resolution
 - Recover HR image from the LR image degraded with unknown kernel
 - Degradation Estimation method
 - -Real-world LQ images corrupted with unknown degradation parameters
 - Estimating unknown degradation parameter and apply non-blind restoration method
 - -Fail due to LQ images with high frequency noises or compression artifacts
 - Data-driven method
 - -Main challenge related to the lack of suitable training pairs
 - \lesssim Capture the paired LQ/HQ images on the same scene by digital camera
 - \pm : Learn restoration mapping with unpaired LQ and HQ
 - ✓Learn from only single and suffer from complex degradation
 - Scandomly shuffle orders of practical degradation

Background

- Degradation-Learning-Based method
 - Deterministic degradation model
 - -Learn the degradation adaptively

Reduce the domain gap between real test images and LR images

- -Fail to model the random factor in degradations
- Probabilistic degradation model
 - -Consider the random factors

SHR images concatenated with random vectors before degraded

- Unclear relationship between random vectors and degradations

Figure 2: Degradation-learning-based methods

- Problem formulation
 - Probabilistic degradation model (PDM)

-Parameterize the degradation with two random variables

$$\mathbf{D}(\mathbf{x}) = (\mathbf{x} \otimes \mathbf{k}) \downarrow_s + \mathbf{n},$$

- Two linear steps
 - Mutually independent

Blur kernels with properties of camera lens/noises with properties of sensors

$$\left\{ egin{array}{ll} \mathbf{y}^{clean} = (\mathbf{x} \otimes \mathbf{k}) \downarrow_s \ \mathbf{y} = \mathbf{y}^{clean} + \mathbf{n} \end{array}
ight. ,$$

Distribution of D

-Distribution of k and n independently modeled

$$p_D(\mathbf{D}) = p_{k,n}(\mathbf{k}, \mathbf{n}) = p_k(\mathbf{k})p_n(\mathbf{n}).$$

- Kernel model
 - Define a priori random variable z_k

-Generate module to learn the mapping from z_k to k:

$$\mathbf{k} = netK(\mathbf{z}_k) \quad \mathbf{z}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

• Spatially blur kernel

-Blur kernel for each pixel of x different

$$\mathbf{z}_k \in \mathcal{R}^{f_k imes h imes w} \quad \mathbf{k} \in \mathcal{R}^{(k imes k) imes h imes w}$$

-General size of convolutional weights 3x3

Example 2 Control of the second secon

Spatial size of convolutional weight set to 1x1

✓Blur kernel independently learned

-Blur kernel approximated by a spatially invariant one

Special case of the spatially variant blur kernel

 $\mathbf{z}_k \in \mathcal{R}^{f_k imes 1 imes 1}$ $\mathbf{k} \in \mathcal{R}^{(k imes k) imes 1 imes 1}$

- Noise model
 - Adding noise to the blurred and downscaled image y^{clean}
 - -Only consider AWGN (additive white gaussian noise)
 - -Independent of the content of y^{clean}

$$\mathbf{n} = netN(\mathbf{z}_n) \quad \mathbf{z}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

• Noise in the raw space *n_{raw}*

-Combination of shot and read noise

E Determined by the camera sensors' analog and digital gains

$$\mathbf{n}_{raw} \sim \mathcal{N}(\mathbf{0}, \sigma_{read} + \sigma_{shot} \mathbf{y}^{clean})$$

-Distribution of n

$$\mathbf{n} = netN(\mathbf{z}_n, \mathbf{y}^{clean}) \quad \mathbf{z}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

- Probabilitstic Degradation Model (PDM)
 - Combine the kernel module and the noise module

$$\begin{cases} \mathbf{y}_{ref}^{clean} = (\mathbf{x}_{ref} \otimes netK(\mathbf{z}_k)) \downarrow_s & \mathbf{z}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{1}) \\ \mathbf{y}_{ref} = \mathbf{y}_{ref}^{clean} + netN(\mathbf{z}_n, \mathbf{y}_{ref}^{clean}) & \mathbf{z}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{1}) \end{cases}$$

-Used to synthesize HR-LR pairs

- Adversarial training
 - -Encourage y_{ref} similar with the test images y_{test}
 - -Assumption the noise n with zero mean

 \lesssim Added an extra regularizer about noise n

Total loss

$$l_{total} = l_{adv} + \lambda l_{reg}$$

- Advantages of using PDM
 - 1. Able to model more diverse degradations
 - Generate more diverse LR images
 - Better cover the degradations of test images
 - Bridge the gap between training and test datasets
 - 2. Priori knowledge about the degradations easily incorporate
 - The shape of z_k and k adaptively adjusted based on the observed blur kernel
 - Reduce the learning space of PDM
 - 3. Formulate as a linear function
 - Better decouple the degradations with image content
 - Focus on learning the degradations
 - Test images heavily blurred
 - Avoid the limitation of extra guidance and focus on learning the degradations

• Dataset used

Datasets	,	Valid	lation			
Datasets	LR (used)	HR (used)	paired	LR	HR	_
2017Track2 [34]	$800(401 \sim 800)$	$800(1 \sim 400)$	\checkmark	100	100	
2018Track2 [35]	$800(401 \sim 800)$	$800(1 \sim 400)$	\checkmark	100	100	
2018Track4 [35]	$3200(1600 \sim 3200)$	$3200(1 \sim 1600)$	\checkmark	100	100	
2020Track1 [26]	$2650(1 \sim 2650)$	$800(1 \sim 800)$	×	100	100	
2020Track2 [26]	$2229(1 \sim 2229)$	$800(1 \sim 800)$	×	100	0	

Paired

Unpaired

• Comparison between other datasets

Methods	2017Track2			2018Track2			2018Track4			2020Track1		
	PSNR ↑	SSIM↑	LPIPS↓	*PSNR↑	*SSIM↑	LPIPS↓	*PSNR↑	*SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Bicubic	21.73	0.5731	0.5430	20.58	0.5304	0.7929	20.26	0.5101	0.7970	25.51	0.6731	0.6414
EDSR [23]	21.58	0.5646	0.4697	20.43	0.5045	0.7778	20.07	0.4771	0.7831	25.34	0.6391	0.6074
DSGAN-SR [12]	20.18	0.5165	0.4314	20.67	0.5829	0.5293	20.26	0.4402	0.5381	23.29	0.6631	0.3295
CinGAN [7]	19.04	0.4451	0.3847	20.10	0.4631	0.4748	20.09	0.4680	0.4903	21.70	0.5814	0.3386
CycleSR [8]	20.70	0.5242	0.4798	21.36	0.5291	0.6390	20.65	0.4980	0.6574	25.48	0.7259	0.3641
Maeda et al. [30]	19.23	0.4754	0.3667	19.90	0.4728	0.4897	18.57	0.4085	0.5322	20.06	0.5368	0.4074
Bulat <i>et al</i> . [4]	19.84	0.5020	0.4115	20.27	0.4488	0.6668	20.91	0.5408	0.5918	21.49	0.5553	0.4935
PDM-SRGAN	23.43	0.6412	0.2475	20.32	0.5257	0.4074	20.25	0.5307	0.4415	24.56	0.6630	0.2716
PDM-SR	23.69	0.6725	0.3427	20.85	0.5870	0.5240	20.32	0.5611	0.5282	26.80	0.7470	0.3601

2017Track2

2018Track2

2020Track2

2020Track1

• Visual comparison

2018Track4

2017Track2

- Learned Degradations
 - Different shapes of blur
 - -2017Track2
 - si: Asymmetric
 - -2018Track4
 - se Symmetric
 - Noise
 - -Learned colorful noise
 - s;; Content of the image

• ReDegNet

- Learn the real degradation and transfer to natural ones

-Degradations from the pairs of real-world LQ and pseudo HQ face images

- Two sub-networks
 - -DegNet

: Elearning the degradation representation $\boldsymbol{\Omega}$

-SynNet

 \oplus Synthesizing the LQ image with the given HQ input and Ω

$$\Omega_{f}^{Rea} = \mathcal{F}_{Deg} \left(I_{f}^{ReaL}, I_{f}^{PseH}; \Theta_{Deg} \right)$$

$$\hat{I}_{f}^{L} = \mathcal{F}_{Syn} \left(I_{f}^{PseH}, \Omega_{f}^{Rea}; \Theta_{Syn} \right) \,,$$

• ReDegNet

- After jointly learn through degradation disentanglement

-The synthetic realistic LQ natural images obtained

Figure 3: Overview of ReDegNet

- Learning Real Degradation from Face Image
 - Utilized the LQ and HQ pairs
 - -Explore the degradation process how the HQ image degraded
 - DegNet

SOGANG UNIVERSITY

-Stacked with several convolutional layers

Followed by spectral normalization and LeakyReLU

-Fully convolutional layer at the last

 \oplus Predict the degradation representation vector $\boldsymbol{\Omega}$

- Synthesizing the LQ Image
 - Remaining problem

- How to utilize to control the degradation process
- Process
 - -Inspired by StyleGANs
 - ${\lesssim}$ Map the degradation representation Ω to W space
 - Sigis Image content of SynNet provided by the features of input HQ images
 - Stepse Degraded image reconstructed with modulated convolution operation
 (MCBlock)
 - -With several cascaded MCBlocks
 - State Final LQ result synthesized

✓ Similar degradation types with the given degradation representation

- Transferring Degradation to Natural Image
 - ReDegNet
 - -Extract the real degradation from pairs of face images
 - -Generate the corresponding LQ image with the expected degradation styles
 - General face restoration
 - -Large degradation representations
 - Extracted from real-world LQ and their pseudo HQ face images
 - -Sample from real degradation pool
 - sis Imitate the real degradation process on natural HQ image
 - Specific restoration
 - -Used to fine-tune on the whole image

- Learning Objectives
 - Disentanglement loss
 - -Extract the degradation-related representations
 - Reconstruction loss
 - -Constrain the synthetic results close to the ground-truth
- Disentanglement Loss
 - Control the degradation styles
 - -Degradation-aware and content-independent
 - Contrastive learning
 - Minimize the distance of Ωs
 - Signage from different content but same degradation parameters
 - -Maximizing these negative pairs

• Disengtanglement Loss

$$\mathcal{L}_{disen} = \left\| \Omega_f^{Syn} - \Omega_n^{Syn} \right\|_2^2 + \frac{\lambda}{\|\Omega_f^{Syn} - \Omega_f^{Rea}\|_2^2 + \epsilon} + \frac{1}{2} \left\| \Theta_{Deg} \right\|_2^2,$$

• Reconstruction Loss

Figure 5: Gram matrix representation

- Mean square error loss \mathcal{L}_{mse} + Realistic loss \mathcal{L}_{real} +Degradation-consistent loss \mathcal{L}_{cons} ✓ Pixel space
- 1. Mean square error loss \mathcal{L}_{mse}

$$\mathcal{L}_{mse} = \ell_{mse}(\hat{I}_{f}^{L}, I_{f}^{ReaL}) = \frac{1}{\mathcal{CHW}} \left\| \hat{I}_{f}^{L} - I_{f}^{ReaL} \right\|^{2} + \sum_{i=1}^{4} \frac{0.1}{\mathcal{C}_{i}\mathcal{H}_{i}\mathcal{W}_{i}} \left\| \Phi_{i}(\hat{I}_{f}^{L}) - \Phi_{i}(I_{f}^{ReaL}) \right\|^{2}$$

Feature space

- 2. Realistic loss \mathcal{L}_{real}
 - Style loss + Adversarial loss
 - Style loss 14 c 3 . 5
 - ✓ Applied Gram matrix on the feature spaces of VGG-19

$$\mathcal{L}_{style} = \sum_{i=1}^{4} \frac{1}{\mathcal{C}_i \mathcal{H}_i \mathcal{W}_i} \left\| \Phi_i (\hat{I}_f^L)^T \Phi_i (\hat{I}_f^L) - \Phi_i (I_f^{ReaL})^T \Phi_i (I_f^{ReaL}) \right\|^2$$

 $\Omega_{f}^{Rea} = \mathcal{F}_{Deg} \left(I_{f}^{ReaL}, I_{f}^{PseH}; \Theta_{Deg} \right)$ $\hat{I}_{f}^{L} = \mathcal{F}_{Syn} \left(I_{f}^{PseH}, \Omega_{f}^{Rea}; \Theta_{Syn} \right),$

Method

- Reconstruction Loss
 - 2. Realistic loss \mathcal{L}_{real}
 - Adversarial Loss
 - Adopt the discriminator from SNGAN
 - E Difficult to distinguish with only synthetic LQ image
 - ✓ Additional condition
 - The HQ image and their degradation representation

 $\mathcal{L}_{D} = -\mathbb{E}[\min(0, -1 + D(I_{f}^{ReaL}, I_{f}^{PseH}, \Omega_{f}^{Rea}))] - \mathbb{E}[\min(0, -1 - D(\hat{I}_{f}^{L}, I_{f}^{PseH}, \Omega_{f}^{Rea}))]$ $\mathcal{L}_{G} = -\mathbb{E}[D(\mathcal{F}_{Syn}(I_{f}^{PseH}, \mathcal{F}_{Deg}(I_{f}^{ReaL}, I_{f}^{PseH}; \Theta_{Deg}); \Theta_{Syn}), I_{f}^{PseH}, \Omega_{f}^{Rea})]$

- Total Loss of Realistic Loss

$$\mathcal{L}_{real} = 0.1 \cdot \mathcal{L}_{style} + \mathcal{L}_G$$

- Reconstruction Loss
 - 3. Degradation-consistent loss \mathcal{L}_{cons}
 - Degradation representation Ω_n^{Syn} , Ω_f^{Syn}
 - Reduce the difference between degradation representation

$$\mathcal{L}_{cons} = \ell_{mse}(\mathcal{F}_{Syn}(I_n^H, \Omega_f^{Syn}; \Theta_{Syn}), I_n^{SynL}) + \ell_{mse}(\mathcal{F}_{Syn}(I_f^{PseH}, \Omega_n^{Syn}; \Theta_{Syn}), I_f^{SynL})$$

Face degradation with natural image

Natural degradation with face image

• Total Loss

 $\mathcal{L} = \lambda_{disen} \mathcal{L}_{disen} + \lambda_{mse} \mathcal{L}_{mse} + \lambda_{real} \mathcal{L}_{real} + \lambda_{cons} \mathcal{L}_{cons}$

Result

- Quantitative comparison
 - Real-world Pairs

-LPIPS performance improved

 \leq : More consistent with human perception

- Real-world
 - -RealSRSet: BSRGAN

-RealLQSet: Internet and LQ frames extracted from 480p video

	Real-world Pairs									Real-world LQ		
${\bf Methods}$	RealSR-Canon		RealSR-Nikon			DRealSR			RealSRSet	RealLQSet		
	$PSNR\uparrow$	$SSIM\uparrow$	LPIPS↓	PSNR↑	$SSIM\uparrow$	LPIPS↓	$PSNR\uparrow$	$SSIM\uparrow$	LPIPS↓	NIQE↓	NIQE↓	
RealSR	25.58	.723	.458	25.49	.693	.459	27.69	.759	.438	4.82	5.62	
BSRGAN	25.61	.768	.363	24.51	.711	.391	26.64	.744	.380	5.60	5.36	
Real-ESRGAN	24 95	768	366	24.50	.716	388	26.57	753	374	5.75	5.24	
Ours	25.57	.765	.362	25.43	.716	.385	26.91	.758	.373	4.85	4.93	
Ours $(-D)$	24.63	.749	.463	24.35	.684	.460	26.32	.740	.425	6.45	6.27	
Ours (U)	25.05	.752	.428	24.72	.708	.421	26.35	.741	.404	5.81	5.93	

Result

• Visual comparison

Sogang University Figure 6: Visual comparison of these competing methods on real-world LQ images

Result

- Visual comparison
 - Combine face image features and natural image features
 - -Handle the general restoration with limited real degradation
 - -Fine-tune the model for some specific scenarios that have face images

Figure 7: Restoration results on real-world LQ image

Conclusion

• PDM-SR

- Probabilistic degradation model (PDM)
 - -Decouple the degradation with the content of the image
 - Model the random factors in degradations
 - Generate HR-LR training sample with a larger variety of degradations
 - ✓Better cover the degradations of test LR images
 - SFIExible formulation of degradations
- ReGeNet
 - Model the real degradations
 - -The real-world LQ face images and pseudo HQ counterparts
 - Transfer real degradation process to HQ natural images
 - Learn degradation from non-facial regions and facial regions
 - Applied to general and specific restoration

Thank you

