2023 동계 세미나

Long-Tail Distribution Learning

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

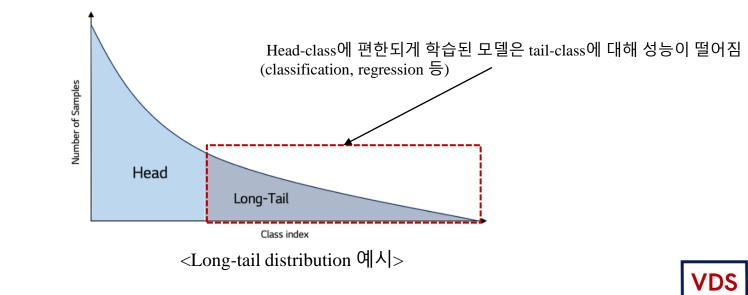
Outline

• Background

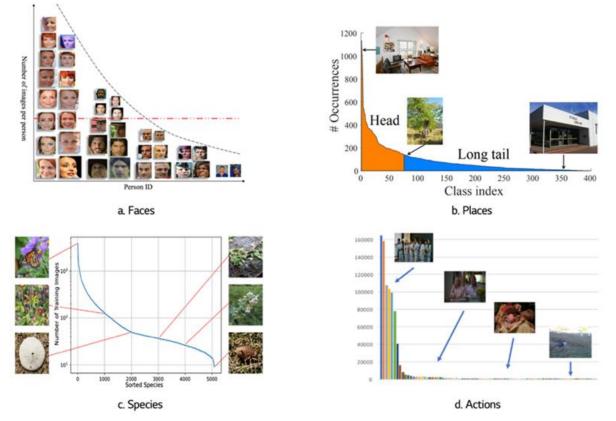
- Long-tail distribution learning
 - -Re-sampling
 - :); Under-sampling
 - Ster-sampling
 - -Cost-Sensitive Learning
 - -Decoupled Learning
- Recent paper
 - Partial and asymmetric contrastive learning for out-of-distribution detection in longtailed recognition

- Long-tail distribution
 - Long-tail distribution을 가진 데이터셋이란?
 - -Class imbalance의 불균형 비율이 매우 큰 특수한 경우
 - Head-class
 - -데이터의 수가 많은 dominant class
 - Long-tail class

-데이터의 수가 적은 scarce class



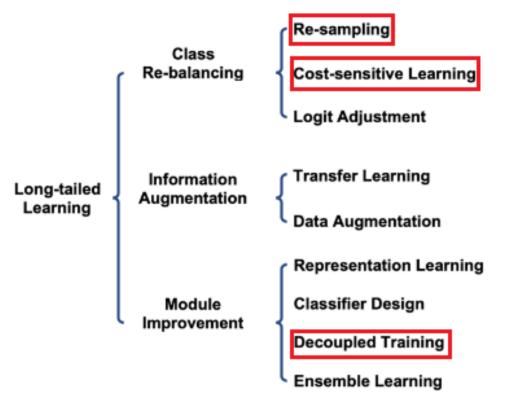
- Long-tail distribution
 - Real-world에서 수집된 large-scale dataset에서는 피해갈 수 없는 문제



<다양한 domain에서 long-tail distribution 예시>

• Long-tail distribution

• How do we solve long-tail distributions?



<Long-tail distribution learning 분류>

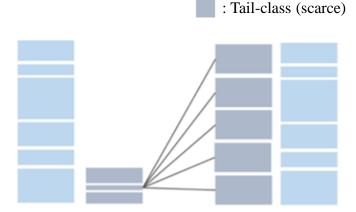
- Long-tail distribution [1]
 - Re-Sampling
 - -Under-sampling

응 Head-class를 줄여서 tail-class와 데이터의 갯수를 맞추는 방법

-Over-sampling

응 Tail-class를 늘려서 head-class와 데이터의 갯수를 맞추는 방법

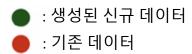
<Under-sampling>

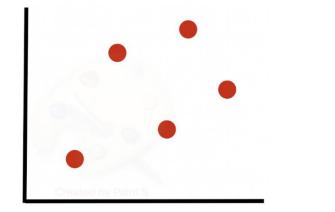


<Over-sampling>

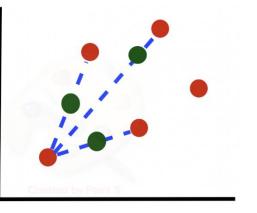
: Head-class (dominant)

- Long-tail distribution [1]
 - Re-Sampling
 - -Over-sampling
 - e;; SMOTE¹⁾
 - 1) 특정 데이터에 대해 nearest neighbor와의 distance를 구함
 - 2) Distance에 0~1 사이의 랜덤 상수 C를 곱함
 - 3) 기존 데이터에 C * Distance를 더해 feature space 상에서 신규 데이터를 생성함
 - 4) 1)~3)의 과정을 *n*번 반복함





Greated by Paint S



<SMOTE 알고리즘을 활용한 데이터 생성 예시>

- Long-tail distribution [2]
 - Cost-Sensitive Learning
 - -각 class 별 loss 값을 다르게 주어 re-balance하는 algorithm적인 접근법

::Softmax

$$\checkmark S(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

Strength Negative log-likelihood loss

$$\checkmark L_{nl} = -\log(\frac{e^{z_i}}{\sum_j e^{z_j}}) = -\log(p_i)$$

:;; Weighted softmax loss

$$\checkmark L_{wnl} = -\frac{1}{n_i}\log(p_i)$$

:;: Focal loss¹⁾

$$\checkmark L_{fl} = -(1-p_i)^{\gamma} \log(p_i)$$

z : predicted logits p : softmax probability n_i : i class의 데이터 수 γ : 상수 parameter i : class

- Long-tail distribution [2]
 - Cost-Sensitive Learning
 - -각 class 별 loss 값을 다르게 주어 re-balance하는 algorithm적인 접근법
 - Strength Negative log-likelihood loss

$$\checkmark L_{nl} = -\log(p_i)$$

si: Focal loss¹⁾

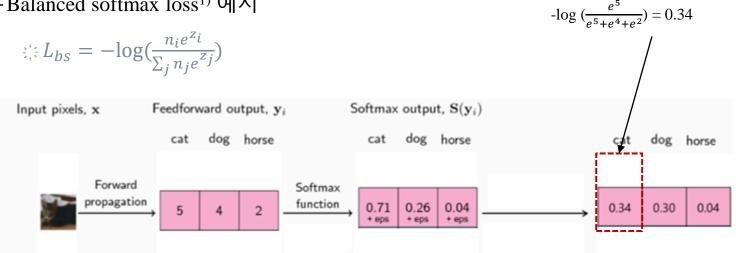
 $\checkmark L_{fl} = -(1-p_i)^{\gamma} \log(p_i)$

- -Case 1 : $p_i = 0.1$ 인 경우 (uncertainty가 높은 tail-class)
 - \therefore Negative log-likelihood loss = -log (0.1) = 2.3
 - Step Focal loss = -(1 0.1)log(0.1) = 2.1
- -Case 2 : $p_i = 0.9$ 인 경우 (uncertainty가 낮은 head-class)

 \lesssim Negative log-likelihood loss = -log (0.9) = 0.1

Step Focal loss = -(1 - 0.9)log(0.9) = 0.01

- Long-tail distribution [2]
 - Cost-Sensitive Learning
 - -Balanced softmax loss¹⁾ 여人



-Case 1 : cat이 head-class인 경우 cat = 10, dog = 5, horse = 2

$$\sin -log \ (\frac{10e^5}{10e^5 + 5e^4 + 2e^2}) = 0.07$$

-Case 2 : cat이 tail-class인 경우 cat = 2, dog = 5, horse = 10

$$e_{i}^{*} - log(\frac{2e^5}{2e^5 + 5e^4 + 10e^2}) = 0.33$$

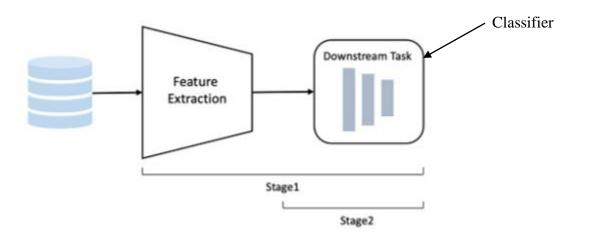
- Long-tail distribution [3]
 - Decoupled Learning¹⁾

-Stage 1 : Representation learning (class-imbalance를 고려하지 않음)

응기존의 end-to-end 방식으로 feature extractor와 classifier를 함께 학습함

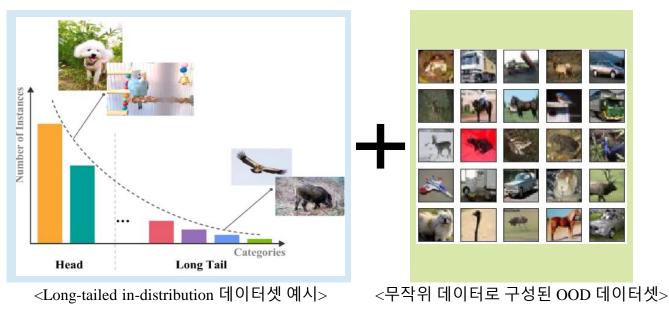
-Stage 2 : Classifier finetuning (class-imbalance를 고려함)

辩Feature extractor는 freeze된 상태에서 classifier를 재학습함



<Decoupling representation and classifier 학습 방법>

- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - Out-of-distribution detection
 - -In-distribution 데이터와 unlabeled out-of-distribution dataset을 사용해 학습 후 inference 시에 새로운 sample이 in-distribution일 경우에는 정확하게 분류
 - -Uncertainty가 높아서 out-of-distribution 데이터로 판단될 경우 outlier로 걸러냄
 - OOD detection + Long-tailed recognition 문제가 동시에 존재하는 데이터셋은?

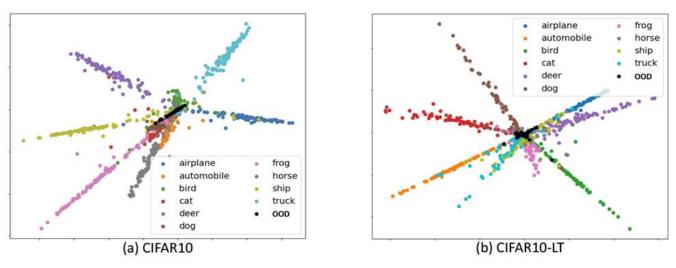


- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - OOD detection + Long-tailed recognition 문제가 동시에 존재하는 데이터셋은?

Method Dataset		AUROC (†)	AUPR (†)	FPR95 (↓)	ACC (†)	
NT	CIFAR10	85.86	84.37	52.52	93.45	
(MSP)	CIFAR10-LT	72.28 (-13.58)	70.27 (-14.10)	66.07 (+13.55)	72.34 (-21.11)	
OE	CIFAR10	96.68	96.29	14.59	92.81	
	CIFAR10-LT	89.92 (-6.75)	87.71 (-8.58)	34.80 (+20.21)	73.30 (-19.51)	
EnergyOE	CIFAR10	96.59	96.37	14.80	93.07	
	CIFAR10-LT	89.31 (-7.27)	88.92 (-7.45)	40.88 (+26.08)	74.68 (-18.39)	
SOFL	CIFAR10	96.74	96.60	14.57	89.13	
	CIFAR10-LT	91.13 (-5.61)	90.49 (-6.10)	34.98 (+20.41)	54.42 (-34.71)	
OECC	CIFAR10	96.27	95.41	14.77	91.95	
	CIFAR10-LT	87.28 (-8.99)	86.29 (-9.12)	45.24 (+30.47)	60.16 (-31.79)	
NTOM	CIFAR10	96.92	96.95	14.95	91.44	
	CIFAR10-LT	92.89 (-4.03)	92.31 (-4.65)	29.03 (+14.09)	66.41 (-25.03)	

<OOD class 추가 이후 일반 데이터셋과 long-tailed 데이터셋 성능 저하 비교>

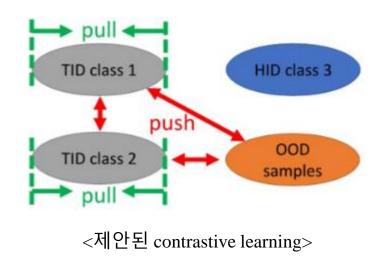
- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - Tail-class로 인한 out-of-distribution detection 성능 저하
 - 정확한 OOD-detection을 위해서는 OOD-sample의 uncertainty가 높아야함
 - -Tail-class의 낮은 데이터량, variance로 인해 학습 시 under-represent 됨
 - 응 OOD-detection 모델이 OOD sample과의 decision boundary를 잘 찾지 못하여 OOD sample에 대해서 over-confident한 prediction을 내게 됨



<일반 데이터셋과 long-tailed 데이터셋의 OOD-detection 성능 시각화>

- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - Contrastive learning
 - -Feature space 상에서 같은 class의 데이터는 가깝게, 다른 class의 데이터는 멀어지게 모델을 학습함



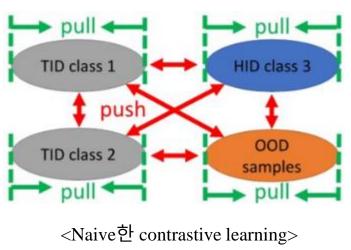


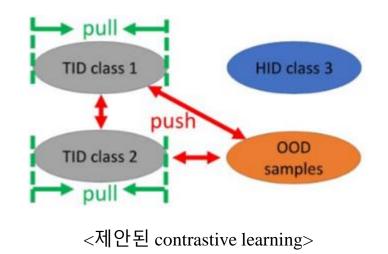
- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - Partial and asymmetric supervised contrastive learning(PASCL)
 - -Partiality

※OOD sample과 tail-class sample에만 부분적으로 contrastive Learning을 적용함

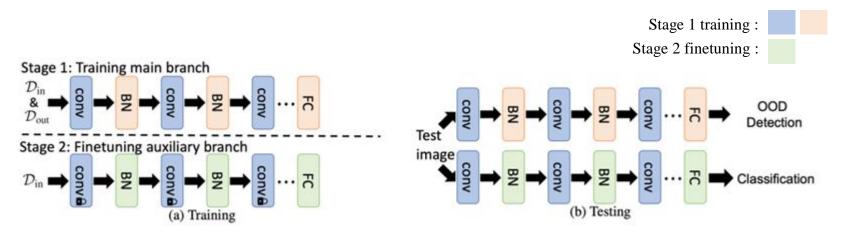
-Asymmetry

응 OOD sample은 feature space에서 서로 가까운 공간에 위치하도록 pull 하지 않음





- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - Auxiliary Branch Fine-Tuning (ABF) Decoupled learning
 - Stage 1에서 OOD + in-distribution 데이터를 사용해서 end-to-end 방식으로 모든 네트워크를 학습함
 - Stage 2에서는 in-distribution 데이터만 사용해서 convolutional layer를 freeze한 상태에서 classifier를 finetuning함
 - 응 학습 데이터가 바뀌었음으로 batch normalization layer에 대해서도 finetuning 진행함



<제안된 decoupled learning>

- Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recognition¹⁾
 - Experiment results

in-distribution classification results in terms of ACC95.								
\mathcal{D}_{out}^{test}	D _{cut} Method A		AUPR (†)	FPR95 (↓)	ACC95 (†)			
Texture	OE Ours	$\begin{array}{c} \textbf{76.71} \pm 1.20 \\ \textbf{76.01} \pm 0.66 \end{array}$	$\begin{array}{c} \textbf{58.79} \pm 1.39 \\ \textbf{58.12} \pm 1.06 \end{array}$	$\begin{array}{c} \textbf{68.28} \pm \textbf{1.53} \\ \textbf{67.43} \pm \textbf{1.93} \end{array}$	$\begin{array}{c} 71.43 \pm 1.58 \\ \textbf{73.11} \pm 1.55 \end{array}$			
SVHN	OE Ours	$\begin{array}{c} 77.61 \pm 3.26 \\ \textbf{80.19} \pm 2.19 \end{array}$	$\begin{array}{c} 86.82 \pm 2.50 \\ \textbf{88.49} \pm 1.59 \end{array}$	$\begin{array}{c} 58.04\pm4.82\\ \textbf{53.45}\pm3.60\end{array}$	$\begin{array}{c} 64.27 \pm 3.26 \\ \textbf{64.50} \pm 1.87 \end{array}$			
CIFAR10	OE Ours	$\begin{array}{c} 62.23 \pm 0.30 \\ \textbf{62.33} \pm 0.38 \end{array}$	$\begin{array}{c} \textbf{57.57} \pm 0.34 \\ \textbf{57.14} \pm 0.20 \end{array}$	$\begin{array}{c} 80.64 \pm 0.98 \\ \textbf{79.55} \pm 0.84 \end{array}$	$\begin{array}{c} \textbf{82.67} \pm 0.99 \\ 82.30 \pm 1.07 \end{array}$			
Tiny ImageNet	OE Ours	$\begin{array}{c} 68.04 \pm 0.37 \\ \textbf{68.20} \pm 0.37 \end{array}$	$\begin{array}{c} \textbf{51.66} \pm 0.51 \\ 51.53 \pm 0.42 \end{array}$	$\begin{array}{c} 76.66\pm0.47\\ \textbf{76.11}\pm0.80\end{array}$	$\begin{array}{c} 76.22 \pm 0.61 \\ \textbf{77.56} \pm 1.15 \end{array}$			
LSUN	OE Ours	$\begin{array}{c} \textbf{77.10} \pm \textbf{0.64} \\ \textbf{77.19} \pm \textbf{0.44} \end{array}$	$\begin{array}{c} \textbf{61.42} \pm 0.99 \\ \textbf{61.27} \pm 0.72 \end{array}$	$\begin{array}{c}\textbf{63.98} \pm 1.38\\\textbf{63.31} \pm 0.87\end{array}$	$\begin{array}{c} \textbf{65.64} \pm 1.03 \\ \textbf{68.05} \pm 1.24 \end{array}$			
Places365	OE Ours	$\begin{array}{c} 75.80\pm0.45\\ \textbf{76.02}\pm0.21\end{array}$	$\begin{array}{c} \textbf{86.68} \pm 0.38 \\ 86.52 \pm 0.29 \end{array}$	$\begin{array}{c} \textbf{65.72} \pm 0.92 \\ \textbf{64.81} \pm 0.27 \end{array}$	$\begin{array}{c} 67.04\pm0.49\\ \textbf{69.04}\pm0.90\end{array}$			
Average	OE Ours	$\begin{array}{c} 72.91 \pm 0.68 \\ \textbf{73.32} \pm 0.32 \end{array}$	$\begin{array}{c} 67.16 \pm 0.57 \\ 67.18 \pm 0.10 \end{array}$	$\begin{array}{c} 68.89\pm1.07\\ \textbf{67.44}\pm0.58\end{array}$	$\begin{array}{c} 71.21 \pm 0.84 \\ \textbf{72.43} \pm 0.66 \end{array}$			

(a) OOD detection results and

(h) is distribution description combining to the second ACCORTON

(b)	in-di	stribution	classificati	on resul	ts in terms	of A	CC@FPR1
	Meth	bod	0 0	ACC@F	PRn (†) 0.01		0.1
-				$\pm 0.38 \\ \pm 0.47$	$\begin{array}{c} 39.38 \pm 0.38 \\ \textbf{43.39} \pm 0.48 \end{array}$		$0 \pm 0.44 \\ 4 \pm 0.38$
1	Yest	(c) Method	Comparison	n with o			ACC (†)
An	erage	ST (MSP) OECC EnergyOE OE OUTS	$\begin{array}{c} 61.00 \\ 70.38 \\ 71.10 \\ \hline \textbf{72.91} \pm 0.68 \\ \textbf{73.32} \pm 0.32 \end{array}$	57.54 66.87 67.22 67.16 ± 67.18 ±	7 73. 71. 0.57 <u>68.89</u>	15 78 ± 1.07	$\begin{array}{r} \underline{40.97}\\ 32.93\\ 39.05\\ 39.04\pm0.37\\ \textbf{43.10}\pm0.47\end{array}$

<논문 실험 결과>

Experiment

- Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-tailed Recognition
 - Contrastive learning

	Asymmetry	Partiality ABF			EDD05 (1)	10005 (1)	ACC@FPR $n(\uparrow)$				
\mathcal{D}_{in}			ABF	AUROC (†)	AUPR (†)	FPR95 (↓)	ACC95 (†)	0	0.001	0.01	0.1
	No contrastive loss (OE)			95.10 ± 1.01	97.14 ± 0.81	16.15 ± 1.52	81.33 ± 0.81	73.84 ± 0.77	73.90 ± 0.77	74.46 ± 0.81	78.88 ± 0.66
	×	x	×	95.34 ± 1.58	97.30 ± 1.20	15.12 ± 3.07	81.94 ± 1.28	75.03 ± 1.46	75.09 ± 1.45	75.60 ± 1.44	80.02 ± 1.10
CIFAR10-LT	×	1	×	95.01 ± 1.25	96.74 ± 0.78	15.31 ± 4.35	82.34 ± 1.56	74.46 ± 1.80	74.52 ± 1.80	75.04 ± 1.76	80.21 ± 0.99
CIFAR10-LI	~	x	×	94.91 ± 1.43	96.86 ± 1.47	15.57 ± 1.19	82.08 ± 0.47	75.24 ± 0.99	75.29 ± 0.98	75.77 ± 0.98	79.85 ± 0.77
	~	1	×	96.63 ± 0.90	98.06 ± 0.56	$\textbf{12.18} \pm 3.33$	81.70 ± 1.21	76.20 ± 0.79	76.26 ± 0.79	76.85 ± 0.81	81.07 ± 0.58
	1	1	1	$\textbf{96.63} \pm 0.90$	$\textbf{98.06} \pm 0.56$	$\textbf{12.18} \pm 3.33$	$\textbf{82.72} \pm 1.51$	$\textbf{77.08} \pm 1.01$	$\textbf{77.13} \pm 1.02$	$\textbf{77.64} \pm 0.99$	$\textbf{81.96} \pm 0.85$
	No contra	stive loss (C	DE)	77.61 ± 3.26	86.82 ± 2.50	58.04 ± 4.82	64.27 ± 3.26	39.04 ± 0.37	39.07 ± 0.38	39.38 ± 0.38	42.40 ± 0.44
	×	×	x	78.05 ± 2.12	87.18 ± 0.87	59.10 ± 5.03	66.44 ± 3.90	40.21 ± 0.43	40.25 ± 0.43	40.56 ± 0.45	43.71 ± 0.42
CIFAR100-LT	×	~	×	79.46 ± 1.83	88.01 ± 1.90	54.59 ± 3.34	63.86 ± 2.52	40.24 ± 0.53	40.28 ± 0.53	40.60 ± 0.55	43.93 ± 0.57
CIFAR100-LI	~	×	×	79.54 ± 2.38	87.68 ± 1.51	54.27 ± 3.69	63.33 ± 2.87	40.00 ± 0.42	40.04 ± 0.41	40.36 ± 0.42	43.60 ± 0.42
	1	1	×	$\textbf{80.19} \pm 2.19$	$\textbf{88.49} \pm 1.59$	$\textbf{53.45} \pm 3.60$	63.10 ± 1.87	40.33 ± 0.20	40.36 ± 0.20	40.66 ± 0.18	43.79 ± 0.22
	~	1	1	$\textbf{80.19} \pm 2.19$	$\textbf{88.49} \pm 1.59$	$\textbf{53.45} \pm 3.60$	$\underline{64.50}\pm1.87$	$\textbf{43.10} \pm 0.47$	$\textbf{43.12} \pm 0.47$	$\textbf{43.39} \pm 0.48$	$\textbf{46.14} \pm 0.38$

Conclusion

- Long-tailed distribution 특성의 dataset에서 OOD detection task 성능을 높일 수 있는 방법을 제안함
 - 그러나 real-life application과 다르게 학습 시 in-distribution sample과 OOD sample이 이미 다른 distribution이라는 정보가 존재함
 - 위의 문제들을 극복하기 위해서는 unsupervised 환경에서 tail-class sample과 OOD sample을 구분할 수 있는 새로운 방법이 필요함
- Long-tail distribution의 특성과 이를 개선하기 위한 다양한 방법론이 존재하나 task, domain specific한 경우가 있음
 - Class imbalance가 존재하는 데이터셋의 근본적인 문제를 정확히 파악하고 특성에 따라서 적합한 알고리즘을 선정하는 능력이 필요함

Thank you!

