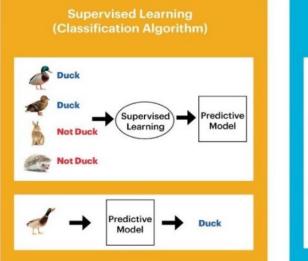
2022 상반기 세미나

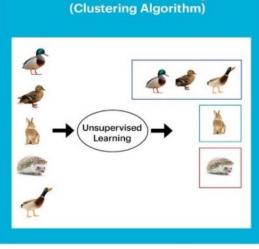
이제임스

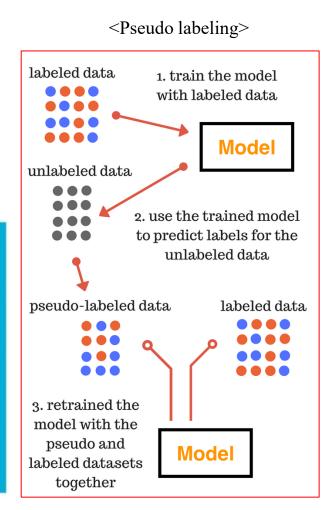
Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

Outline

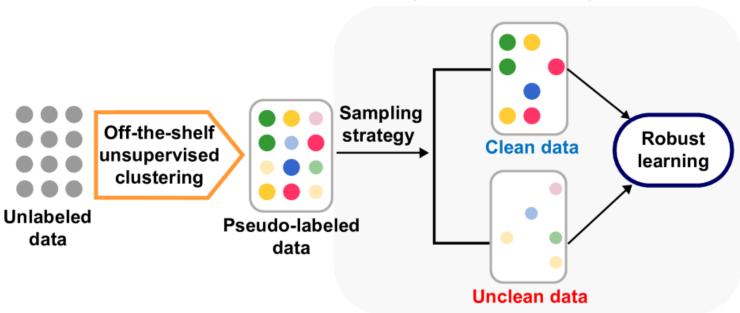

- Introduction
 - Supervised learning, unsupervised learning, semi-supervised learning
- Paper
 - Improving Unsupervised Image Clustering With Robust Learning (CVPR 2021)
- Application paper
 - Instance-Aware, Context-Focused, and Memory-Efficient Weakly Supervised Object Detection (CVPR 2020)
 - End-to-End Semi-Supervised Object Detection with Soft Teacher (ICCV 2021)



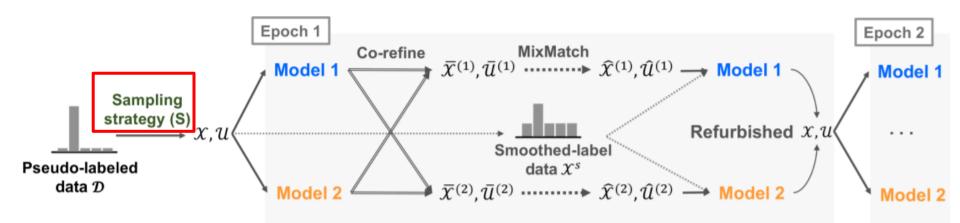

Introduction

- Machine learning
 - Supervised learning
 - Unsupervised learning
 - Semi-Supervised learning

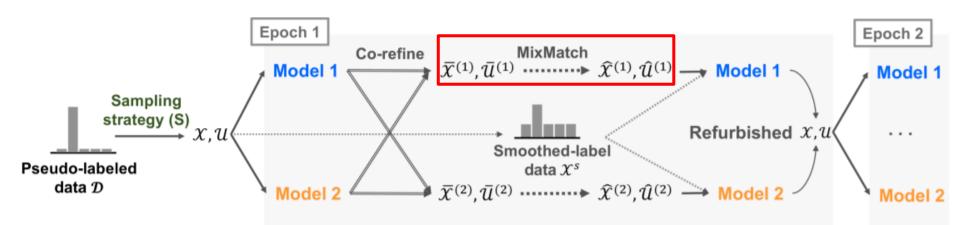
Unsupervised Learning

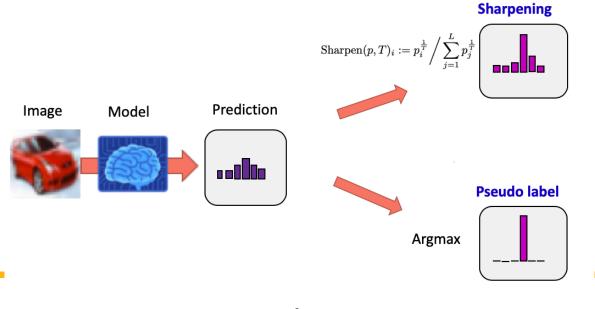


Paper

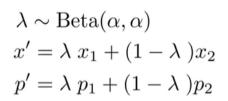

- Improving Unsupervised Image Clustering With Robust Learning (CVPR 2021)
 - Extracting Clean Samples
 - Retraining via Robust Learning

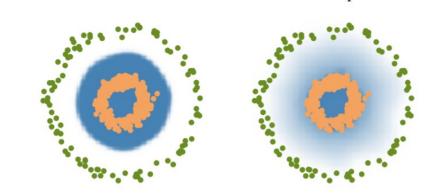
- Extracting Clean Samples
 - Confidence-based strategy
 - Set a sufficiently high threshold for confidence score
 - Metric-based strategy
 - Leverages an additional embedding network learned in an unsupervised manner (SimCLR)
 - Non-parameteric classifier based on k-Nearest Neighbor
 - Hybrid strategy


- Extracting Clean Samples
 - SCAN: Learning to Classify Images without Labels
 - Unsupervised Image classification
 - se Pretext task
 - ✓Image representation learning without label (SimCLR)
 - ✓ Learning semantic features that do not change according to image transformation
 - Scan clustering
 - ✓Learn to predict the same cluster by maximizing the similarity of the closest neighbors by image
 - Self-labeling
 - ✓Proceed with supervised learning based on the confidence of the well-clustered image



- Retraining via Robust Learning
 - Vanilla semi-supervised learning
 - MixMatch
 - Estimates low-entropy mixed labels from unlabeled examples using MixUp augmentation
 - String additional resistance against noisy labels
 - ✓ Consistency Regularization
 - ✓ Entropy Minimization
 - ✓Mix up


- Consistency Regularization
 - Data augmentation
 - Minimizing the pairwise difference of output
- Entropy Minimization
 - Distinguish the ambiguous ones near the decision boundary
 - MixMatch → sharpening, FixMatch → pseudo labeling



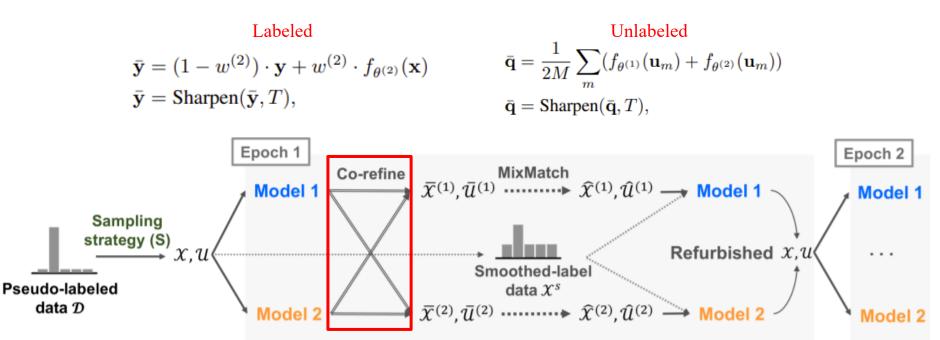
- Mixup
 - The solution for problem of overfitting training data
 - Use the distribution of training datasets in the vicinity \rightarrow data augmentation
 - Labeled data
 - Augment one by data + label \rightarrow convex combination \rightarrow supervised loss
 - Unlabeled data
 - Augment K by data + guessed label \rightarrow convex combination \rightarrow consistency loss

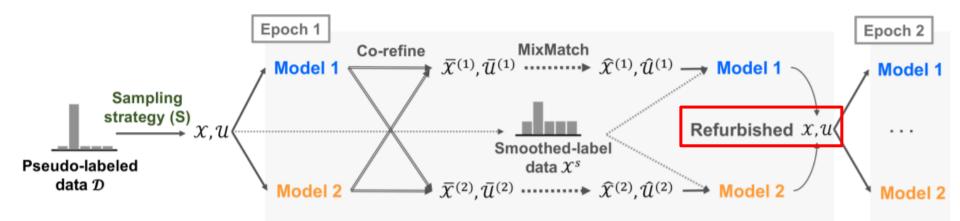
mixup

ERM

- Retraining via Robust Learning
 - Label smoothing
 - Regularize the model from being overconfident to noisy predictions
 - Hard label → soft label
 - Sig Make a uniform distribution of classes except for the correct answer

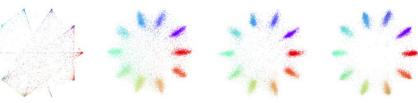
✓ Inject uniform noise to all classes


Scompute cross-entropy soft label and predicted label



- Retraining via Robust Learning
 - Co-training
 - Single network \rightarrow vulnerability of overfitting to incorrect pseudo-labels
 - Two networks f1, f2 are trained in parallel and exchange their guesses

- Retraining via Robust Learning
 - Co-refurbishing
 - Unclean data
 - Refurbish the noise samples at the end of every epoch to deliver the extra clean samples
 - the prediction probability of network exceeds the threshold value
 - $\checkmark Add$ to the clean data and appended to the labeled set X



Experiments

• Unsupervised Image Clustering

Method	CIFAR-10	CIFAR-20	STL-10
k-means [45]	22.9	13.0	19.2
Spectral clustering [55]	24.7	13.6	15.9
Triplets [37]	20.5	9.9	24.4
Autoencoder (AE) [4]	31.4	16.5	30.3
Variational Bayes AE [24]	29.1	15.2	28.2
GAN [36]	31.5	15.1	29.8
JULE [52]	27.2	13.7	27.7
DEC [49]	30.1	18.5	35.9
DAC [8]	52.2	23.8	47.0
DeepCluster [6]	37.4	18.9	33.4
ADC [15]	32.5	16.0	53.0
IIC [22]	61.7	25.7	49.9
TSUC† [17]	80.2	35.5	62.0
SCAN† [42]	88.7	50.6	81.4
TSUC + RUC (Confidence)	81.8 / 82.5	39.6 / 40.6	65.1 / 65.5
TSUC + RUC (Metric)	82.5 / 82.9	39.5 / 40.4	66.3 / 66.6
TSUC + RUC (Hybrid)	82.1 / 82.8	39.5 / 40.6	66.0 / 66.8
SCAN + RUC (Confidence)	90.3 / 90.3	53.3 / 53.5	86.7 / 86.8
SCAN + RUC (Metric)	89.5 / 89.5	53.9 / 53.9	84.7 / 85.1
SCAN + RUC (Hybrid)	90.1/90.1	54.3 / 54.5	86.6 / 86.7

(b) SCAN+RUC (epoch 50)

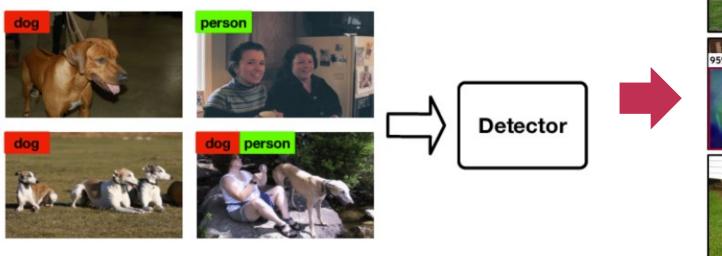
(c) SCAN+RUC (epoch 100) (d) SCAN+RUC (epoch 200)

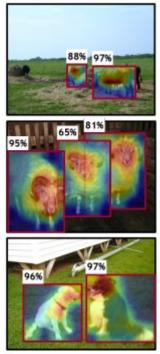
Method SCAN (Best)		SCAN + RUC (Last / Best accuracy)	
ImageNet-50	76.8	78.5 / 78.5	

Setup	Last Acc	Best Acc
RUC with all components	86.7	86.8
without co-training	86.2	86.4
without label smoothing	85.5	85.8
with MixMatch only	85.2	85.4

Paper

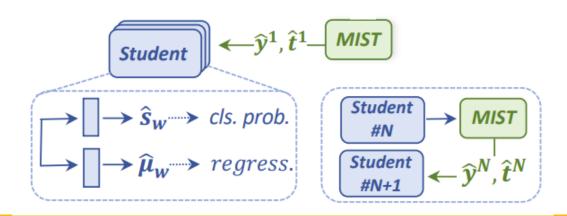
• Instance-Aware, Context-Focused, and Memory-Efficient Weakly Supervised Object Detection (CVPR 2020)




어강대학교

SOGANG UNIVERSITY

- Weakly Supervised Object Detection
 - Multiple instance learning (MIL)
 - Select major instances among them and accurately predict the label of the bundle
 - Training based on classification loss
 - To select the most confident positive proposals


Weakly Supervised Detection

- Multiple instance self-training (MIST)
 - Input image \rightarrow Pretrained network \rightarrow proposal R (instance)
 - Sort the score of each class
 - High-scoring non-overlapping regions R' (pseudo label)
 - Stance-level regression and classification label
 - (Classification logits + detection) logits score
 - Teacher-student repetitive distilling process proceeds (self-training)

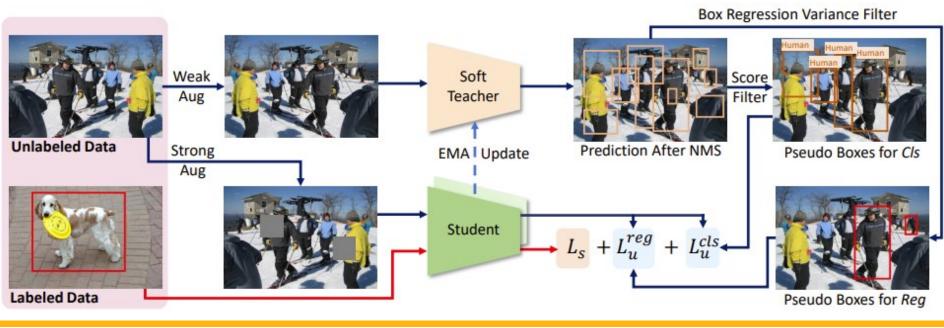
Experiments

- Comparison of the model to the baseline
 - Left: baseline, right: model results

Missing Instance

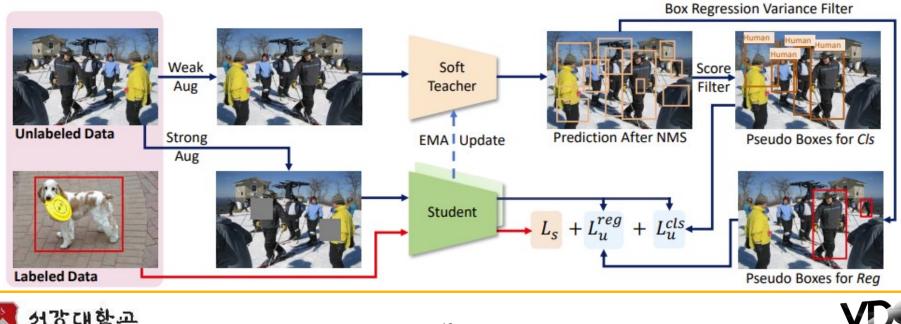
Grouped Instance

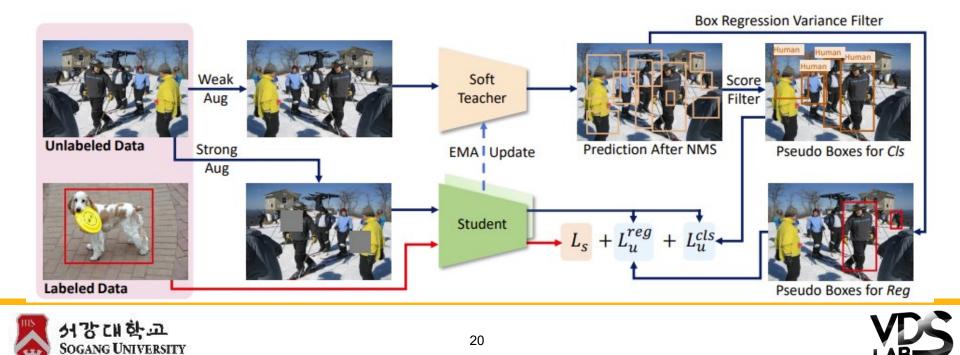
Part Domination



Paper

- End-to-End Semi-Supervised Object Detection with Soft Teacher (ICCV 2021)
 - Method
 - End-to-End Pseudo-Labeling Framework
 - <u>Soft Teacher</u>




SOGANG UNIVERSITY

- End-to-End Semi-Supervised Object Detection with Soft Teacher (ICCV 2021)
 - Soft Teacher
 - Teacher model
 - \Rightarrow Weak augmentation (unlabeled data) \Rightarrow Soft Teacher \Rightarrow NMS \Rightarrow high-confidence score
 - → Box regression variance filter
 - \Leftrightarrow EMA update (student \rightarrow teacher)

- End-to-End Semi-Supervised Object Detection with Soft Teacher (ICCV 2021)
 - Soft Teacher
 - Student model
 - \Rightarrow : Labeled data + strong augmentation (unlabeled data) \rightarrow prediction
 - Scomparison prediction of student and pseudo labeled data produced by Soft teacher

Experiments

- Qualitative results
 - Left: baseline, right: model results

References

- Lee, Pilhyeon, Youngjung Uh, and Hyeran Byun. "Background suppression network for weakly-supervised temporal action localization." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 07. 2020.
- Zhao, Ting, and Xiangqian Wu. "Pyramid feature attention network for saliency detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
- Zhang, Can, et al. "CoLA: Weakly-Supervised Temporal Action Localization with Snippet Contrastive Learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Thank you!

