Normalizing Flows 2022 하계세미나

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

목차

- Generative Models
 - Generative Adversarial Network (GAN)
 - Variational AutoEncoder (VAE)
 - Normalizing Flows
 - -Density estimation
 - -Anomaly detection
 - -Image generation
- RealNVP
- Glow
- SRFlow

Generative Models

• GAN

• Fake sample을 생성하는 generator와 이를 real data와 구별하는 discriminator를 학습

-Content loss(L1, L2) 와 adversarial loss를 사용하여 학습

• VAE

- Evidence lower bound(ELBO)의 maximize를 통해 log-likelihood를 최적화
- Low dimension의 latent space가 decoder를 통해 생성한 결과에서 blurry 함이 나타남

Generative Models

- Normalizing Flow
 - Invertible transformation을 사용하여 exact negative log-likelihood를 사용하여 학습
 - Invertible하므로 latent space z와 x의 dimension이 동일함

Fig.3 Normalizing Flow structure

Method			Tr Sp	ain eed	Samp Spee	ole Num. ed Params	Resoluti S. Scaling	on Free-form Jacobian	Exact Density	FID	NLL (in BPD)
Generative	e Adversari	ial Network	s								
DCGAN	J [182]		**	***	****	* *****	*****	1	×	37.11	-
ProGAN	J [114]		**	****		* ****	*****	1	×	15.52	-
BigGAN	1 [19]		**	++++		* ****	*****	1	×	14.73	-
StyleGA	N2 + ADA	[115]	**	****		*****	*****	1	×	2.42	-
Variational	Autoenco	lers									
Convolu	tional VAE	[123]	**	*****		* *****	*****	1	(1)	106.37	< 4.54
Variation	nal Lossy A	È [29]	***	*****		* ****	*****	×	(v)	-	≤ 2.95
VO-VAE [184], [235]			**	*****		* ****	*****	×	(V)	-	≤ 4.67
VD-VAE [31]			***	*****		* *****	*****	1	(v)	-	≤ 2.87
Normalizi	ng Flows										
RealNV	P [43]		**	***	****	* ****	*****	×	1	-	3.49
GLOW	[124]		**	*****		*****	*****	×	1	45.99	3.35
FFJORD	[62]		**	*****		*****	*****	1	(√)	-	3.40
Residual Flow [26]			**	****		*****	*****	1	(v)	46.37	3.28
	1 Char	2 Charro	2 Chara	4.6	tare	E Charro					
	1 Star	2 Stars	5 Stars	4.5	lars	5 Stars					
Training >5 days ≤ 5 days ≤ 2			$\leq 2 \text{ days}$	2 days ≤1 days		$\leq \frac{1}{2}$ day			$\mathbf{v} \cdot \mathbf{i}$	ntractable	densities
Sampling AR MCMC Mi		Middle	iddle ≤20 steps		1 step					uclisities	
Params $>120M \leq 120M \leq \epsilon$			$\leq 60M$	0M ≤30M		$\leq 10M$			(✔):8	ipproxima	te densities
Resolution <32 32 64			64 or 128	or 128 256 or 512		≥ 1024			✓ :	tractable	densities

Fig.4 Generative Models 비교

Pros and Cons

• Pros

- 학습의 안정성
 - -Generator / Discriminator의 학습 과정에서 hyperparameter 설정이 까다로운 GAN
 - 응 Normalizing Flows는 negative log likehood loss만을 사용하여 학습하기 때문에 학습 과정이 매우 안정적임

✓Exact log-likelihood를 계산할 수 있으며, 이를 사용하여 학습하기 때문에 GAN, VAE에 비해 converge하기 쉬움

•생성된 결과

- 일반적으로 GAN, VAE에 비해 realistic하고 blurry하지 않은 이미지 생성 가능

• Cons

• Bijective한 특성을 위한 구조적 제한 발생

- Invertible해야 하기 때문에 latent space의 dimension이 input 이미지와 동일함

- Invertible한 특성 유지하기 위해 나타나는 transformation function의 표현력 제한

Normalizing Flow

- Normal distribution
 - $\cdot f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

• Input data를 normal distribution으로 변형하기 위한 Flow들의 집합

 $f(z) = x, f^{-1}(x) = z$ 의 관계를 갖는 transformation 함수 : Flows

응 Latent space z는 임의의 distribution이지만, computational cost를 고려하여 normal distribution으로 사용

Change of variable theorem

- Single random variable z
 - Normalizing Flows에서는 Normal distribution을 가정
- Mapping function f

- p(x) = ?
 - 확률분포의 정의에 따라,

 $\int p(x)dx = 1 = \int \pi(z)dz \,,$

$$p(x) = \pi(z) \left| \frac{dz}{dx} \right| = \pi(f^{-1}(x)) \left| \frac{df^{-1}}{dx} \right|$$

• 다변수로 확장 Jacobian $p(\mathbf{x}) = \pi(\mathbf{z}) \left| \frac{d\mathbf{z}}{d\mathbf{x}} \right| = \pi(f^{-1}(\mathbf{x})) \left| \frac{df^{-1}}{d\mathbf{x}} \right|$

Change of variable theorem

$$\mathbf{x} = \mathbf{z}_{K} = f_{K} \circ f_{K-1} \circ \cdots \circ f_{1}(\mathbf{z}_{0})$$

$$\log p(\mathbf{x}) = \log \pi_{K}(\mathbf{z}_{K}) = \log \pi_{K-1}(\mathbf{z}_{K-1}) - \log \left| \det \frac{df_{K}}{d\mathbf{z}_{K-1}} \right|$$

$$= \log \pi_{K-2}(\mathbf{z}_{K-2}) - \log \left| \det \frac{df_{K-1}}{d\mathbf{z}_{K-2}} \right| - \log \left| \det \frac{df_{K}}{d\mathbf{z}_{K-1}} \right|$$

$$= \dots$$

$$= \log \pi_{0}^{1}(\mathbf{z}_{0}) - \sum_{i=1}^{K} \log \left| \det \frac{df_{i}}{d\mathbf{z}_{i-1}} \right|$$

Normal distribution

- p(x)를 Flow들을 통해 normal distribution으로 표현 가능
 - Transformation function이 invertible해야 함
 - 각 transformation function의 Jacobian의 연산이 쉬워야 함

- 두 조건을 만족하는 함수로 affine transformation을 제안

RealNVP^[1] [ICLR 2017]

• Affine transform

$$\begin{cases} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \\ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp(s(\mathbf{x}_{1:d})) + t(\mathbf{x}_{1:d}) \\ \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \\ \mathbf{x}_{d+1:D} &= (\mathbf{y}_{d+1:D} - t(\mathbf{y}_{1:d})) \odot \exp(-s(\mathbf{y}_{1:d})) \end{cases}$$

Bijective

-Weight matrix의 inverse matrix 연산 없이 inverse function을 구할 수 있음

응 따라서 neural network로 구성된 s(), t() function을 자유롭게 구성 가능

Jacobian

$$\frac{\partial y}{\partial x^T} = \begin{bmatrix} \mathbb{I}_d & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^T} & \text{diag}\left(\exp\left[s\left(x_{1:d}\right)\right]\right) \end{bmatrix}$$
$$\det(J) = \prod_{j=1}^{D-d} \exp\left(s\left(x_{1:d}\right)\right)_j = \exp\left(\sum_{j=1}^{D-d} s\left(x_{1:d}\right)_j\right)$$

RealNVP^[1]

- Affine transform
 - 입력 feature의 channel을 반으로 분할함 (x_1, x_2)
 - 변경하지 않는 부분 (x₁) 과 변경하는 부분(x₂)를 지정
 - x_1 을 사용하여 x_2 를 scale, translation하여 affine transformation을 수행
 - :;: Forward propagation

$$\checkmark y_{1:d} = x_{1:d}$$

$$\checkmark y_{d+1:D} = x_{d+1:D} \odot e^{s(x_{1:d})} + t(x_{1:d})$$

<Forward propagation>

$$\checkmark x_{1:d} = y_{1:d}$$

 $\checkmark x_{d+1:D} = (y_{d+1:D} - t(y_{1:d})) \odot e^{-s(y_{1:d})}$

<Backward propagation>

Fig.7 Affine transform structure

RealNVP^[1]

- 여러 개의 coupling layer를 통해 Flows를 구성
 - $(f_b \circ f_a)(x) = z$

$$\frac{\partial (f_b \circ f_a)}{\partial x_a^T}(x_a) = \frac{\partial f_a}{\partial x_a^T}(x_a) \cdot \frac{\partial f_b}{\partial x_b^T}(x_b = f_a(x_a))$$
$$\det(A \cdot B) = \det(A) \det(B).$$

SOGANG UNIVERSITY

$$(f_b \circ f_a)^{-1} = f_a^{-1} \circ f_b^{-1}$$

• Channel permutation

RealNVP^[1]

- Squeezing operation
 - Channel간의 연산을 통한 affine transform을 수행해야 함
 - 이미지는 통상 RGB 3 channel로 구성됨
 - ☆ Squeezing operation을 통해 channel size를 늘림
 - 응 Invertible 한 특성을 유지하기 위해서는 C * H * W의 값은 변할 수 없음
 - -따라서 squeeze operation을 수행
 - ☆ Spatial size를 반으로 줄이는 효과
 - : Shuffle 이후 reshape하여 spatial size는 ¼, channel은 4배가 됨

Dim: 3 * 4 * 4

Fig.9 Squeeze operation

Dequantization

- Normalizing Flow는 확률 분포 추정 모델
 - Input image는 digital로 저장되므로 discrete 함
 - Normalizing Flow는 continuous random variable의 distribution을 추정
 - -따라서 많은 dequantization 기법이 도입되어 input image를 dequantinize
- Dequantinization method

SOGANG UNIVERSITY

- Adding uniform noise
 - -RealNVP, Glow, ...
 - -Gaussian, variational, Importance-weighted, ...

Glow^[1] [NIPS 2018]

- RealNVP의 successor로, 3개의 모듈로 하나의 step(flow)을 구성
 - Activation normalization
 - -Invertible한 channel-wise normalization을 수행
 - Solution: Forward : S * X + b
 - (S = Backward : 1/S * (Y-b) log-det : h * w * sum(log|s|)
 - Invertible 1x1 convolution layer
 - RealNVP에서 적용한 단순하게 channel의 순서를 reverse 방향으로 바꾸는 것은 학습이 불가능한 부분이며 편향이 존재함
 - -Glow에서는 이를 1x1 conv로 generalize하여 permutation을 학습하도록 함
 - 응 Invertible하도록 weight의 diagonal 성분만 남김
 - street Forward : y = W * x
 - $\text{Sigmatrix} Inverse: x = W^{-1} * y \qquad \qquad \text{log-det: h * w * log(det|W|)}$
 - Affine coupling layer
 - -RealNVP와 동일한 transformation function의 affine coupling layer 사용

Fig.10 Architecture of a step in Glow

$Glow^{[1]}$

- Multi-scale architecture
 - 3개의 substep으로 구성된 step of flow를 사용하여 multi-scale architecture 구성
 - -Checkerboard pattern을 사용해 이미지를 channel-wise masking하여 squeeze함
 - -Step of flow를 K번 수행 하는 것 : Level
 - -Level의 수행이 끝나면 transform되는 부분과 그렇지 않은 부분으로 split 함

☆ 나뉜 부분 중 transform이 끝난 부분 (z_i)는 바로 Gaussian distribution이 되도록 학습
☆ 나머지 절반은 다음 level로 넘겨 다음 level의 step of flow 수행
☆ 마지막 level의 경우 연산 결과가 Gaussian distribution이 되도록 학습

$Glow^{[1]}$

• Experimental Results

Fig.13 Random samples from RealNVP

Fig.14 Random samples from Glow

Model	CIFAR-10	ImageNet 32x32	ImageNet 64x64	LSUN (bedroom)	LSUN (tower)	LSUN (church outdoor)
RealNVP	3.49	4.28	3.98	2.72	2.81	3.08
Glow	3.35	4.09	3.81	2.38	2.46	2.67

*Bits per dimension (BPD) : Negative Log-Likelihood / (C * H * W) 낮을수록 Gaussian distribution에 근접하도록 잘 학습된 것

$Glow^{[1]}$

Fig.15 Linear interpolation in latent space between real images

• Ablation study

- Conditional Normalizing Flows^[1]
 - Affine coupling layer에 condition을 부여

Fig.17 Conditional coupling block (affine transform)

 $f^{-1}(\cdot; \mathbf{c}, \theta) = g(\cdot; \mathbf{c}, \theta).$ $p_X(\mathbf{x}; \mathbf{c}, \theta) = p_Z(f(\mathbf{x}; \mathbf{c}, \theta)) \left| \det\left(\frac{\partial f}{\partial \mathbf{x}}\right) \right|$ $\mathcal{L} = \mathbb{E}_i \left[-\log\left(p_X(\mathbf{x}_i; \mathbf{c}_i, \theta)\right) \right] - \log\left(p_\theta(\theta)\right)$

- Conditional Normalizing Flows^[1]
 - Class-conditional generation for MNIST dataset
 - -One-hot vector condition으로 class condition을 주어 학습
 - -Tidy, narrow, wide, messy, faint, bold의 총 6가지 종류의 dataset 학습

祟0~9의 숫자 condition, 글자 종류의 두 가지 condition을 학습하였음

✓ 0~9에 해당하는 이미지가 condition을 통해 하나의 latent space로 학습됨

응 Backward propagation에서는 latent space에서 normal distribution에 따라 sample하고 생성하고자 하는 숫자의 condition을 사용하여 inverse 방향 inference

OGANG UNIVERSITY

Fig.19 Generated samples from conditional flow model

- Conditional Normalizing Flows^[1]
 - Diverse ImageNet colorization
 - -YCbCr image의 Y를 condition으로 사용하여 CbCr 성분을 변형하여 다양한 색상의 이미지 생성
 - -Y로부터 color feature CbCr을 예측하도록 condition feature extraction network h를 pretrain하여 사용함
 - 응 연산량 최소화를 위해 각 transform function에서 사용할 수 있는 condition network의 크기는 제한됨
 - ✓ Network h를 사용해 각 layer에서는 network h에서 생성한 feature를 각 flow level에 맞게 tuning하는 역할을 수행

Fig.20 Normalizing Flows model for ImageNet colorization

- Conditional Normalizing Flows^[1]
 - Diverse ImageNet colorization

<Generated image>

<Condition>

Fig.21 Samples from Conditional Normalizing Flows

<Generated image>

SRFlow^[1] [ECCV 2020 Spotlight]

- Super Resolution
 - Low resolution(LR)의 이미지로부터 high resolution(HR) 이미지를 복원
 - 한 장의 LR 이미지로부터 여러 HR이미지가 생성될 수 있음
 - 응여러 장의 다른 HR 이미지를 resize하였을 때 동일한 LR 이미지를 얻을 수 있기 때문

✓ ill-posed problem

- 기존의 GAN 방식으로 SR을 해결하려고 한 문제는 이를 반영하지 못함
 - 응 Deterministic한 방식으로, 하나의 weight에서 하나의 output만 생성이 가능함
- 따라서 Normalizing Flows를 도입하여 이러한 특성을 고려할 수 있는 method 제안
 - 응 Content loss, adversarial loss로 구성된 GAN
 - 흙본 논문에서는 Normalizing Flow를 사용하여 negative log-likelihood loss만 사용

Output: Single SR Image

14023

Output: SR Image Distribution

- Main contribution
 - ill-posed problem인 super resolution의 nature를 반영 가능
 - 단일 loss (NLL)을 사용하여 mode-collapse가 일어나는 GAN보다 학습이 안정적
 - -Mode-collapse : Discriminator가 Generator보다 쉽게 성능이 좋아져 generator가 하나의 sample만 생성하게 되는 것
 - 정확한 latent space로의 mapping이 보장됨
 - -Latent space에서의 manipulation technique을 통한 image content transfer, latent space normalization을 통한 harmonization이 적용될 수 있음

Fig.22 Sample images of content transfer

- Conditional Affine Coupling
 - Affine coupling layer에 condition을 적용하여 HR 이미지에 대한 분포 학습
 - -LR 이미지를 condition으로 주어 HR 이미지의 분포를 학습
 - -Affine layer의 neural network input으로 split한 channel의 절반과 LR image condition을 concatenate하여 입력
 - 응 Neural network의 결과로 나온 scale factor, translate factor를 사용하여 나머지 절반 channel의 affine transform을 수행

Fig.23 Conditional affine coupling block structure

- GLOW architecture를 따름
 - 1x1 convolution
 - 최적의 channel 순서를 학습
 - Actnorm
 - -Invertible한 channel-wise normalization
 - Squeeze
 - -RealNVP와 동일한 squeeze operation

• Flow-step

- -각 flow-step은 Actnorm, 1x1 conv, affine injector layer, conditional affine coupling layer로 구성
- -각 level마다 16개의 steps로 구성
- -4x SR의 경우 3개의 level으로 구성
- -8x SR의 경우 4개의 level으로 구성

- Affine injector layer
 - Condition만을 이용하여 affine coupling layer 수행

DIV2K $4\times$	$\mathrm{PSNR}\uparrow$	$\mathrm{SSIM}\uparrow$
No Lin. F-Step No Affine Ini.	$26.96 \\ 26.81$	$0.759 \\ 0.756$
SRFlow	27.09	0.763

Table.2 Comparison with ablative experiments

- 응따라서 channel을 split하여 neural network에 넣지 않음
- 응 오직 condition으로 생성한 scale, transition 값을 전체 feature에 대하여 affine 수행
- 응이 layer를 사용해 condition에 따른 분포 학습을 도움
- Low resolution encoder
 - 각 level에서의 LR condition의 풍부한 표현력을 위해 ESRGAN^[2]에서 제안한 RRDB 구조를 사용하여 encoding하여 사용
- Transition step
 - Squeezing operation에 의해 나타나는 checkerboard artifact를 완화
 - -Squeezing operation은 단순히 pixel의 re-ordering이므로 artifact가 발생할 수 있음
 - -기존 방법은 모든 step을 condition layer로 구성하였는데, 이 경우 squeezing operation에 대한 channel permutation을 학습하지 못하는 경우가 발생함
 - -Squeezing 이후에 conditional layer 없이 1x1 conv만 통과함으로써 squeeze 이후 channel 순서를 더 잘 학습할 수 있음

- Train
 - High resolution 이미지를 squeeze하여 input으로 사용
 - Low resolution 이미지를 LR encoder를 통해 condition으로 사용

-결과적으로 latent space에서 Gaussian distribution을 갖도록 NLL Loss로 학습

- Inference
 - Latent space에서 Gaussian distribution에서 sample
 - LR 이미지를 condition으로 사용하여 역방향으로 inference하여 SR 이미지 획득

27

• Experimental Results

• Experimental Results

• DIV2K dataset의 100 validation images로 실험

	DIV2K $4\times$								DIV2K 8×					
	$\mathrm{PSNR}\uparrow$	$\rm SSIM\uparrow$	LPIPS↓	$LR-PSNR\uparrow$	NIQE↓	$\mathrm{BRISQUE}{\downarrow}$	PIQUE↓	$PSNR\uparrow$	$\rm SSIM\uparrow$	LPIPS↓	$LR-PSNR\uparrow$	NIQE↓	$BRISQUE\downarrow$	PIQUE↓
Bicubic	26.70	0.77	0.409	38.70	5.20	53.8	86.6	23.74	0.63	0.584	37.16	6.65	60.3	97.6
EDSR [24]	28.98	0.83	0.270	54.89	4.46	43.3	77.5	-	-	-	-	-	-	-
RRDB [47]	29.44	0.84	0.253	49.20	5.08	52.4	86.7	25.50	0.70	0.419	45.43	4.35	42.4	79.1
RankSRGAN [56]	26.55	0.75	0.128	42.33	2.45	17.2	20.1	-	-	-	-	-	-	-
ESRGAN [47]	26.22	0.75	0.124	39.03	2.61	22.7	26.2	22.18	0.58	0.277	31.35	2.52	20.6	25.8
SRFlow $\tau = 0.9$	27.09	0.76	0.120	49.96	3.57	17.8	18.6	23.05	0.57	0.272	50.00	3.49	20.9	17.1

Table.3 Result comparison on DIV2K dataset

CelebA dataset

LR	L	$\uparrow \mathrm{PSNR}$	$\uparrow \rm SSIM$	$\downarrow \rm LPIPS$	$ \uparrow$ LR-PSNR	↓NIQE	$\downarrow \rm BRISQUE$	$\downarrow \rm PIQUE$	\uparrow Diversity σ
icubic	Bicubic	23.15	0.63	0.517	35.19	7.82	58.6	99.97	0
	RRDB [47]	26.59	0.77	0.230	48.22	6.02	49.7	86.5	0
	ESRGAN [47]	22.88	0.63	0.120	34.04	3.46	23.7	32.4	0
Щ	SRFlow $\tau = 0.8$	25.24	0.71	0.110	50.85	4.20	23.2	24.0	5.21
ž.	ProgFSR [19]	23.97	0.67	0.129	41.95	3.49	28.6	33.2	0
$\mathbf{P}_{\mathbf{r}}$	SRFlow $\tau = 0.8$	25.20	0.71	0.110	51.05	4.20	22.5	23.1	5.28

Table.4 Result comparison on CelebA dataset

- Ablative Study
 - •각 level을 구성하는 step 개수
 - Step이 많을수록 complex한 구조에서의 artifact가 적고 reconstruction 결과가 더 자연스럽게 나타남
 - Coupling layer를 구성하는 neural network의 channel dimension
 - -Dimension이 클수록 자연스러운 이미지 생성 가능

K = 16 Steps K = 8 Steps K = 4 Steps

196 Channels

64 Channels

Fig.26 Analysis of number of flow steps and dimensionality

감사합니다

