Neural Human Rendering

Recent novel view synthesis method of dynamic human performance

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented By Hosung Son

Contents

- What is neural rendering?
 - Computer graphics in 3d rendering
 - Neural rendering
- Fundamentals of Neural Rendering
 - Key points of Neural rendering
 - Scene representation
- Novel view synthesis
 - Static contents
 - Non-static contents
- Paper
 - HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular video

What is neural rendering?

- Computer graphics in 3d rendering
 - Physical parameters from object and camera
 - -Light transport
 - si: Absorption
 - Streflection
 - Scattering:
 - -Material properties
 - -Camera parameters for image projection

- All parameters should be input rendering model for high-quality reconstruction

- Rendering equation¹⁾
 - -Consider only emitted. scattered light and geometry where:
 - More considerations are in next version of the eq.
 - Reflection, Transmission...
 - -Ray tracing, ray marching, path tracing

Visual differences according to light absorptance

Phong shading model

- I(x, x') is the related to the intensity of light
 - passing from point x' to point xis a "geometry" term
- g(x, x') is a "geor $\epsilon(x, x')$ is related
 - x' is related to the intensity of emitted light from x' to x
- $\rho(x, x'x'')$ is related to the intensity of light scattered from x'' to x by a patch of surface at x'

Rendering equation

What is neural rendering?

- Computer graphics in 3d rendering
 - Surface rendering
 - -MVS with SfM [COLMAP]
 - SFeature extracting/matching algorithm
 - S: Triangulation
 - -MVS with Neural Networks
 - Sector Extraction using DNN
 - Si Matching cost volume (Homography)
 - : Depth estimation per view (Regression)
 - Volume rendering

ひていかっ

OGANG UNIVERSITY

- -Based on ray casting method
 - 1) Casting rays
 - 2) Sampling
 - 3) Shading
 - 4) Compositing

What is neural rendering?

• Neural rendering

Many kinds of neural rendering tasks

- Shape and appearance rendering combining two insights.
 - -Classical Computer Graphics
 - Deep Neural Network
- Optimizing functions with Neural network such as MLPs
 - -Non-linear optimization
 - Optimization strategies

Fundamentals of Neural Rendering

- Key points of Neural rendering
 - Disentanglement of camera capturing process and 3D scene representation
 - Neural rendering methods should be differentiable for training
- Scene representation
 - Surface representation
 - -Explicit \rightarrow <u>point cloud</u>, polygon <u>mesh</u>

-Implicit \rightarrow zero level set of implicit function

 $\implies S_{implicit} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \middle| f_{implicit}(x, y, z) = 0 \right\}$

- Volumetric representation
 - -Densities, opacities or occupancies
 - -Multi-dimensional features
 - a colors, radiance

DGANG UNIVERSITY

Implicit surface representation of SDF

differentiable scheme from computer graphics which are motivated by physics.

Novel view synthesis

- View synthesis of static contents
 - Neural Radiance Fields (NeRF¹⁾)

- Volume rendering with radiance fields²⁾

 $t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right]$

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

- Uniform ray sampling

 $C(\mathbf{r})$: expected color $\sigma(\mathbf{x})$: volume density $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$: camera ray t_n : near bound t_f : far bound

 $\delta_i = t_{i+1} - t_i$: distance between samples

- Discretized representation of volume rendering³) $\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right) \quad \blacksquare \quad C(\mathbf{r}) = \sum_{i=1}^{D} (\prod_{j=1}^{i-1} (1 - \alpha_j)) \alpha_i \mathbf{c}(\mathbf{x}_i), \alpha_i = 1 - \exp(-\sigma(\mathbf{x}_i) \Delta t_i),$

Volume rendering eq. from $NeRF^{1)}$

→ Differentiable!!

Volume rendering eq. from HumanNeRF

Quadrature rule

Novel view synthesis

- View synthesis of Non-static contents
 - Human performance dataset (Multi-view)

ZjU-MoCaP¹⁾

AIST++²⁾

• "In the wild" monocular videos from Youtube

story

invisible

way2sexy

Novel view synthesis

- View synthesis of Non-static contents
 - Time varying in motion
 - -Since human performance is time varying, it is difficult to generate generalized appearance.
 - If the motion is highly dynamic, unintentional artifacts could be input to model.
 - Deformation
 - -Human face
 - sexpression :
 - -Clothes
 - -Etc...
 - Occlusion
 - If not a multi-view contents, occlusion is very likely to occur.
 - -Cross section of human body parts

- (a) Input Video
 - NeRF with face deformation [HyperNeRF¹]

NeRF with dynamic motion [NeuralBody²)]

• Overall architecture

HumanNeRF teaser video

• Input

- Monocular video of complex human performance
- -Human, camera pose at each frame (Not use template)
- Output
 - -Free-viewpoint rendering for any frame in the sequence
- Components
 - -Pose refiner: $\Delta\Omega$
 - -Motion fields: T_{skel} , T_{NR}
 - -Canonical Volume: F_c

- 3D canonical space
 - Canonical volume F_c
 - -Continuous field with an MLP
 - -Outputs color **c** and density σ

 $-F_c(\mathbf{x}) = \mathrm{MLP}_{\theta_c}(\gamma(\mathbf{x}))$

 \mathbf{X}_{c}

Canonical space

Optimized canonical appearance [ZjU-MoCaP-Subject387]

• Positional encoding $\gamma(x)$

Positional Encoding

- -From NeRF¹, basic implementation is inefficient in the required number of samples per ray.
- -Positional encoding maps each input 5D coordinate into a higher dimensional space
 - \rightarrow It enables the MLP to represent higher frequency functions
 - Sinusoidal embedding function

 $\mathbf{x} \mapsto {\sin(2^0\pi\mathbf{x}), \cos(2^0\pi\mathbf{x}), \cdots, \sin(2^{L-1}\pi\mathbf{x}), \cos(2^{L-1}\pi\mathbf{x})}$

- Motion fields
 - Transformation between observation field and canonical space
 - To handle complex human movement with complex deformation by decomposing the motion field two parts
 - -Skeletal motion field T_{skel} : Inverse (volumetric) linear-blend skinning
 - -Non-rigid motion field T_{NR} : Complex deformation of non-rigid human appearance
 - Skeletal motion field $T_{skel}^{(1)}$
 - -Skeletal motion field provides the coarse deformation driven by standard skinning.

$$-T_{skel}(\mathbf{x},\mathbf{p}) = \sum_{i=1}^{K} \omega_o^i(\mathbf{x}) (R_i \mathbf{x} + \mathbf{t}_i)$$

$$-\omega_o^i(\mathbf{x}) = \frac{\omega_c^i(R_i\mathbf{x} + \mathbf{t}_i)}{\sum_{i=1}^K \omega_c^k(\mathbf{x})(R_k\mathbf{x} + \mathbf{t}_k)}$$

Solving for a single set of weight volumes $\{\omega_c^i(\mathbf{x})\}$ in canonical space can lead better generalization as it avoids over-fitting.

$$-\{\omega_c^i(\mathbf{x})\} \coloneqq W_c(\mathbf{x}) = \text{CNN}_{\theta_{\text{skel}}}(\mathbf{x}; \mathbf{z})$$

- Motion fields
 - Non-rigid motion field T_{NR}
 - Output an offset Δx to the skeletal motion
 - $-\Delta \mathbf{x}(\mathbf{x}, \mathbf{p}) = T_{NR}(T_{skel}(\mathbf{x}, \mathbf{p}), \mathbf{p})$
 - $-T_{NR}(x, \mathbf{p}) = MLP_{\theta_{NR}}(\gamma(x); \Omega)$

Figure 8. Without delayed optimization and strong decoupling of skeletal and non-rigd deformations, generalization to unseen views is poor (b). With delayed optimization, the decoupling leads to good generalization (c).

- -Estimate difficult deformation of high-deformable region in dynamic human motion
- Delayed optimization of non-rigid motion field¹⁾
 - -Disable non-rigid motions at the beginning of optimization until 100K (in practice)
 - -Hann window was applied to frequency bands of positional encoding \rightarrow prevent over-fitting

$$\omega(\alpha) = \frac{1 - \cos(\text{clamp}(\alpha - j, 0, 1)\pi)}{2}, \qquad \alpha(t) = L \frac{\max(0, t - T_s)}{T_e - T_s}, \qquad j \in \{0, \cdots, L - 1\}$$

 $i : \omega(\alpha)$: weight for each frequency band *j* of positional encoding

 $\beta \alpha(t)$: width of a truncated Hann window

$$\gamma_{\alpha}(x) = \{w_0 \sin(2^0 \pi \mathbf{x}), w_0 \cos(2^0 \pi \mathbf{x}), \cdots, w_{L-1} \sin(2^{L-1} \pi \mathbf{x}), w_{L-1} \cos(2^{L-1} \pi \mathbf{x})\}$$

 \approx If $\alpha = 0$, non-rigid motion completely be disabled

Effect of delayed optimization

- Pose refinement module
 - Pose refinement
 - Initial human poses from 'pose detector' is not accuracy.
 - -MLP based network outputs difference of joint rotative vectors $\Delta \Omega$.
 - -Network better explains the observations and improve the skeleton-driven deformation.
 - -Pose correction function P_{pose}
 - Sconsider 23 joints except for the root. (body orientation)
 - Sinstead, describe changes of global body orientation as camera rotations.

Pose refinement network architecture

• Qualitative results

- Renderings
 - Zju-MoCaP subject 387

• Performance

	Subject 377			Subject 386			Subject 387		
	PSNR ↑	SSIM ↑	LPIPS* \downarrow	PSNR ↑	SSIM ↑	LPIPS* \downarrow	PSNR ↑	SSIM \uparrow	LPIPS* \downarrow
Neural Body [48]	29.11	0.9674	40.95	30.54	0.9678	46.43	27.00	0.9518	59.47
Ours	30.41	0.9743	24.06	33.20	0.9752	28.99	28.18	0.9632	35.58
	Subject 392			Subject 393			Subject 394		
	PSNR ↑	SSIM ↑	LPIPS* \downarrow	PSNR ↑	SSIM ↑	LPIPS* \downarrow	PSNR ↑	SSIM ↑	LPIPS* \downarrow
Neural Body [48]	30.10	0.9642	53.27	28.61	0.9590	59.05	29.10	0.9593	54.55
Ours	31.04	0.9705	32.12	28.31	0.9603	36.72	30.31	0.9642	32.89

- Limitations
 - Occlusion
 - It has artifacts when part of the body is not shown in the video (occlusion)
 - Pose correction failure
 - If the initial pose estimate is poor or the image contains strong artifact such as motion blur
 - Non-rigid motion covering
 - -Authors assume non-rigid motion is pose-dependent, but it is not always true
 - -E.g. clothes shifting due to wind or due to follow-through after dynamic subject motion
 - Only consider human scene, not background scene

