곽재호 Vision and Display System Lab. Sogang University

Outline

- Background
 - Anomaly Detection (AD)
 - Anomaly detection datasets
 - AUROC
 - Methodologies
 - [1] Normalizing Flows (Real-NVP)
- Anomaly Detection with Normalizing Flows
 - [2] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - [3] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)

• Anomaly Detection (AD)

- Anomaly detection datasets
 - CIFAR-10 vs SVHN (or LSUN, CelebA, etc.)
 - [1] ShanghaiTech-AD dataset

• Anomaly Detection (AD)

- Anomaly detection datasets
 - [1] MVTec-AD dataset

Object classes

Texture classes

- Anomaly Detection (AD)
 - AUROC (Area Under Receiver Operating Characteristic curve)
 - As threshold grows along the anomaly score axis, TPR (TP/TP+FN) and FPR (FP/FP+TN) decrease
 - SE AUROC is the area under the ROC curve
 - The more two classes are separated, higher AUROC

거강대학교

SOGANG UNIVERSITY

	Positive	Negative		
Positive	True Positive	False Positive		
Negative	False Negative	True Negative		

• Anomaly Detection (AD)

- Methodologies
 - [1] Deep-SVDD (Support Vector Data Description)
 - Solution: Jointly learns the network parameters W together with minimizing the volume of a data-enclosing hypersphere in output space F
 - Deep SVDD was trained to extract a data-dependent representation, removing the need to choose an appropriate kernel function by hand
 - At test time, the distance between the representation of the input and the center is used as an anomaly score

• Anomaly Detection (AD)

- Methodologies
 - [1] Patch-SVDD (Support Vector Data Description)
 - See Patch-SVDD extends Deep-SVDD to a patch-wise detection method
 - \checkmark Patch-SVDD performs inspection on every patch to localize a defect
 - Solution: Mapping all the features of dissimilar patches to a single center and imposing a uni-modal cluster weaken the connection between the representation and the content
 - To deal with this, the encoder was trained to gather semantically similar patches by itself

$$\mathcal{L}_{\text{SVDD'}} = \sum_{i,i'} \|f_{\theta}(\mathbf{p}_i) - f_{\theta}(\mathbf{p}_{i'})\|_2$$

Deep SVDD

• Anomaly Detection (AD)

- Methodologies
 - [1] Patch-SVDD (Support Vector Data Description)
 - Separate Patch-SVDD stores all the representation of the galleries' (training dataset)
 - At test time for every patch p with a stride S within test image x, the L2 distance to the nearest **normal patch** in the feature space is then defined to be its anomaly score

$$\mathcal{A}_{\theta}^{\text{patch}}(\mathbf{p}) \doteq \min_{\mathbf{p}_{\text{normal}}} \|f_{\theta}(\mathbf{p}) - f_{\theta}(\mathbf{p}_{\text{normal}})\|_2$$

• [1] Normalizing Flows (Real-NVP)

- Basic Idea
 - [2] "a good representation is one in which the distribution of the data is easy to model"
 - Find transformation h = f(x) of the data into a new space such that the resulting distribution factorizes
 - Each distribution H_d should be **independent**, and could be any **parametric** distribution (ex. Gaussian, Poisson)
 - The transformation f is **easily invertible**, and the dimension of h is same as the dimension of x

- [1] Normalizing Flows (Real-NVP)
 - Change of variable formula
 - The likelihood of a datapoint at the feature space could be written with the following **change of variables formula**

$$p_X(x) = p_H(f(x)) |\det \frac{\partial f(x)}{\partial x}|.$$
 $h \sim p_H(h)$
 $x = f^{-1}(h)$

Solution an arbitrary distribution $p_X(x)$, likelihood at a datapoint x' is $p_X(x')$

$$\log p_X(x) = \log p_H(f(x)) + \log \left| \det \frac{\partial f(x)}{\partial x} \right|$$

- If a random variable H follows a Standard Gaussian distribution, $h \sim \mathcal{N}(0, 1)$

$$p_H(h) = (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}h^2\right)$$

- Log-likelihood of $p_H(h)$ is just a L2 distance of the datapoint on the latent space
- Now, all that matter is the log determinant of the Jacobian (red box)

• [1] Normalizing Flows (Real-NVP)

- Computational complexity of determinant of the Jacobian
 - However, the complexity of computing the **determinant of the Jacobian** is a major drawback
- Determinant of the triangular matrix
 - The determinant of an upper (or lower) triangular matrix is the product of the main diagonal entries

$$J_{f} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix} \qquad det \ U = \begin{vmatrix} d_{1} & * & * & * \\ 0 & d_{2} & * & * \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & d_{n} \end{vmatrix} = d_{1} \times d_{2} \times \cdots \times d_{n}$$

- [1] Normalizing Flows (Real-NVP)
 - Affine coupling layer
 - For the sake of easy determinant of the Jacobian, a special transform was proposed, coupling layer

$$y_{1:d} = x_{1:d}$$

 $y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d})$

s and t stand for scale and translation, and are functions from $R^d \to R^{D-d}$ (MLP)

- With this type of transformation, the determinant of the Jacobian will be a lower triangular matrix

$$\frac{\partial y}{\partial x^{T}} = \begin{bmatrix} \mathbb{I}_{d} & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^{T}} & \text{diag}\left(\exp\left[s\left(x_{1:d}\right)\right]\right) \end{bmatrix}$$

- And eventually, log-determinant of the Jacobian is $\sum_j s(x_{1:d})$

$$\log p_X(x) = \log p_H(f(x)) + \log \left| \det \frac{\partial f(x)}{\partial x} \right|$$

• [1] Normalizing Flows (Real-NVP)

- Combining coupling layer
 - Although coupling layers can be powerful, their forward transformation leaves some components unchanged
 - By sequentially attaching the coupling layers, overall network's representation power grows

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - Detection of anomalies via the usage of likelihoods provided by a **normalizing flow** on multiscale image features with multi-transform evaluation
 - Anomaly localization without training labels, the necessity of any pixel-wise optimization and sub-image detection
- [2] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - Proposed to use **conditional normalizing flows for unsupervised anomaly detection with localization** using computational and memory-efficient architecture

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - Detection of anomalies via the usage of likelihoods provided by a **normalizing flow** on multiscale image features with multi-transform evaluation
 - Anomaly localization without training labels, the necessity of any pixel-wise optimization and sub-image detection

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - DifferNet is a density estimation-based network using [2] Real-NVP
 - Density estimation of image features $\mathbf{y} \in Y$ from the anomaly-free training images $\mathbf{x} \in X$
 - DifferNet uses an ImageNet pretrained feature extractor which is not further optimized
 - There have been [3] studies showing that it cannot be effectively applied to data of high dimensionality
 - As there are many defects with variable scales in MVTec-AD dataset, DifferNet uses a multi-scale feature extractor
 - DifferNet also used image transforms such as rotation.

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - What is learned from the network is a **transformation** from the feature space to the latent space
 - Training is done in a way that maximizes the likelihood for extracted features y
 - According to the change-of-variable formula, this problem could be described as maximizing

$$p_{Y}(y) = p_{Z}(z) \left| \det \frac{\partial z}{\partial y} \right|.$$
Simple MLE! $\log p_{Y}(y) = \log p_{Z}(z) + \log \left| \det \frac{\partial z}{\partial y} \right|$

$$\mathcal{L}(y) = \frac{\left\| z \right\|_{2}^{2}}{2} - \log \left| \det \frac{\partial z}{\partial y} \right|.$$
Log-likelihood & Megative log-likelihood & MVG modeling $z \sim \mathcal{N}(0, I)$

- The first term (in the red box) of the loss function forces NF to map all y as close as possible to z=0
- The latter term (in the blue box) penalizes trivial solutions (all points are mapped into z=0)
- Thanks to the **tractability** of the determinant of the Jacobian, it is easy to calculate the exact **log-likelihoods in the feature space** $(log p_y(y))$

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - Likelihoods are directly used as a criterion to classify a sample as anomalous or normal

 $\tau(x) = \mathbb{E}_{T_i \in \mathcal{T}} \left[-\log p_Z(f_{\rm NF}(f_{\rm ex}(T_i(x)))) \right].$

- At test time, multiple transformations are used to get a robust anomaly score $\tau(x)$

🔅 Rotations or manipulations of brightness and contrast

- An image is classified as anomalous if the anomaly score $\tau(x)$ is above the threshold value θ where $\mathcal{A}(x) = 1$ indicates an anomaly
 - $\Leftrightarrow \theta$ is varied to calculate the AUROC

$$\mathcal{A}(x) = \begin{cases} 1 & \text{for } \tau(x) \ge \theta \\ 0 & \text{for } \tau(x) < \theta \end{cases},$$

거강대한고

SOGANG UNIVERSITY

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - Image-level AUROC in % for detected anomalies of all categories of MVTec AD

	Category	GeoTrans	GANomaly	DSEBM	OCSVM	1-NN	DifferNet
		[10]	[1]	[30]	[2]	[21]	(ours)
Ires	Grid	61.9	70.8	71.7	41.0	55.7	84.0
	Leather	84.1	84.2	41.6	88.0	90.3	97.1
ext	Tile	41.7	79.4	69.0	87.6	96.9	99.4
F	Carpet	43.7	69.9	41.3	62.7	<u>81.1</u>	92.9
	Wood	61.1	83.4	95.2	95.3	93.4	99.8
	Bottle	74.4	89.2	81.8	99.0	98.7	99,0
	Capsule	67.0	73.2	59.4	54.4	71.1	86.9
	Pill	63.0	74.3	80.6	72.9	<u>83.7</u>	88.8
cts	Transistor	<u>86.9</u>	79.2	74.1	56.7	75.6	91.1
bje	Zipper	82.0	74.5	58.4	51.7	<u>88.6</u>	95.1
0	Cable	78.3	75.7	68.5	80.3	88.5	95.9
	Hazelnut	35.9	78.5	76.2	91.1	<u>97.9</u>	99.3
	Metal Nut	<u>81.3</u>	70.0	67.9	61.1	76.7	96.1
	Screw	50.0	74.6	99.9	74.7	67.0	<u>96.3</u>
	Toothbrush	<u>97.2</u>	65.3	78.1	61.9	91.9	98.6
	Average	67.2	76.2	70.9	71.9	83.9	94.9

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - Anomaly detection results on [2] Magnetic Tile Defects dataset

- [1] Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows (WACV 2021)
 - Anomaly localization could be done with propagating the negative log-likelihood back to the input image x

- [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - Proposed to use **conditional normalizing flows for unsupervised anomaly detection with localization** using computational and memory-efficient architecture

- [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - CFlow also uses an ImageNet pretrained feature extractor which is not further optimized
 - One difference with DifferNet is that CFlow uses multi-scale features from the encoder's pyramid pooling layers
 - Cflow performs anomaly localization with a variation of the [2] Real-NVP, namely, conditional flow
 - Conditional vector c_i is a 2D form of conventional positional encoding (sinusoidal)
 - S: Conditional vector gives spatial information of each feature vector to the CFlow decoder

- [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - Training procedure is same as DifferNet
 - Maximizing the likelihoods of the features in the feature space

::: i is the index of each training dataset

- All K scale CFlow decoders are trained

- [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - Anomaly score for each pixel is also directly computed with the likelihoods at the latent space

$$\log \hat{p}_Z(\boldsymbol{z}_i, \boldsymbol{c}_i, \hat{\boldsymbol{\theta}}) = -\frac{\|\boldsymbol{u}_i\|_2^2 + D\log(2\pi)}{2} + \log|\det \boldsymbol{J}_i|$$

- Here, $\hat{p}_Z(\boldsymbol{z}, \boldsymbol{c}, \widehat{\boldsymbol{\theta}})$ is the likelihoods of transformed feature vectors $(\mathcal{F} \to Z)$

 $\Rightarrow \hat{p}_{Z}(\boldsymbol{z},\boldsymbol{c},\widehat{\boldsymbol{\theta}}) = p_{Z}(\boldsymbol{z})|\det \boldsymbol{J}_{i}|$

- After calculating all the log-likelihoods for each pixel, normalize them to be in [0:1] range

Constructing anomaly maps for each scale is finished

- Up-sample all the anomaly maps into the input image resolution using bilinear interpolation
- The final anomaly score map is made by aggregating all the anomaly score maps

- [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - CFlow learns every patch's (effective receptive field in the input image) distribution
 - Which is like the Patch-SVDD
 - However, Patch-SVDD stores every trained representation, this makes difference in speed, memory usage
 - CFlow followed [2] a study that concatenates the intermediate vectors inside decoder coupling layers with the conditional vectors
 - Conditional vector gives spatial information of each feature vector to the CFlow decoder

• [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)

•	Experimental	results	(pixel	level AD	AUROC	on the	MVTe	ec-AD	dataset)
---	--------------	---------	--------	----------	-------	--------	------	-------	----------

Encoder	WRN50	WRN50	WRN50	WRN50	WRN50	R18	R18	MNetV3	MNetV3
# of CL	4 -	\rightarrow 8	8	8	8	8	8	8	8
# of PL	2	2 —	\rightarrow 3	3	3	3	3	3	3
$H \times W$	256	256	256 —	\rightarrow 512	512	256 —	\rightarrow 512	256 —	\rightarrow 512
Туре	CFLOW	CFLOW	CFLOW	CFLOW -	→ UFLOW	CFLOW	CFLOW	CFLOW	CFLOW
Bottle	97.28±0.03	97.24±0.03	98.76±0.01	98.98±0.01	$98.83{\scriptstyle\pm0.01}$	98.47±0.03	98.64±0.01	98.74	98.92
Cable	95.71±0.01	96.17±0.07	97.64±0.04	$97.12_{\pm 0.06}$	$95.29{\scriptstyle\pm0.04}$	96.75±0.04	$96.07 \scriptstyle \pm 0.06$	97.62	97.49
Capsule	$98.17 \scriptstyle \pm 0.02$	$98.19{\scriptstyle \pm 0.05}$	$98.98{\scriptstyle\pm0.00}$	$98.64_{\pm 0.02}$	$98.40{\scriptstyle \pm 0.12}$	98.62±0.02	$98.28{\scriptstyle\pm0.05}$	98.89	98.75
Carpet	$98.50_{\pm 0.01}$	$98.55{\scriptstyle\pm0.01}$	$99.23_{\pm 0.01}$	99.25±0.01	$99.24_{\pm 0.00}$	99.00±0.01	$99.29{\scriptstyle \pm 0.00}$	98.64	99.00
Grid	$93.77_{\pm 0.05}$	$93.88{\scriptstyle\pm0.16}$	$96.89 \scriptstyle \pm 0.02$	$98.99_{\pm 0.02}$	$98.74{\scriptstyle\pm0.00}$	93.95±0.04	$98.53{\scriptstyle \pm 0.01}$	94.75	98.81
Hazelnut	$98.08 \scriptstyle \pm 0.01$	$98.13_{\pm 0.02}$	$98.82 \scriptstyle \pm 0.01$	98.89 ± 0.01	$98.88{\scriptstyle \pm 0.01}$	98.81±0.01	$98.41{\scriptstyle\pm0.01}$	98.88	99.00
Leather	$98.92{\scriptstyle\pm0.02}$	99.00±0.06	99.61±0.01	99.66±0.00	$99.65{\scriptstyle\pm0.00}$	99.45±0.01	$99.51_{\pm 0.02}$	99.50	99.64
Metal Nut	$96.72_{\pm 0.03}$	$96.72_{\pm 0.06}$	$98.56 \scriptstyle \pm 0.03$	$98.25_{\pm 0.04}$	$98.16{\scriptstyle \pm 0.03}$	97.59±0.05	$96.42{\scriptstyle\pm0.03}$	98.36	98.78
Pill	$98.46_{\pm 0.02}$	$98.46_{\pm 0.01}$	98.95 ± 0.00	$98.52_{\pm 0.05}$	$98.20{\scriptstyle \pm 0.08}$	98.34±0.02	$97.80{\scriptstyle \pm 0.05}$	98.69	98.44
Screw	$94.98{\scriptstyle\pm0.06}$	$95.28_{\pm 0.06}$	$98.10_{\pm 0.05}$	98.86±0.02	$98.78_{\pm 0.01}$	97.38±0.03	$98.40{\scriptstyle\pm0.03}$	98.04	99.09
Tile	$95.52{\scriptstyle\pm0.02}$	95.66±0.06	$97.71_{\pm 0.02}$	98.01±0.01	$97.98{\scriptstyle \pm 0.02}$	95.10±0.02	95.80±0.10	96.07	96.48
Toothbrush	$98.02_{\pm 0.03}$	$97.98{\scriptstyle\pm0.00}$	$98.56 \scriptstyle \pm 0.02$	98.93 ± 0.00	$98.89{\scriptstyle\pm0.00}$	$98.44_{\pm 0.02}$	$99.00{\scriptstyle \pm 0.01}$	98.09	98.80
Transistor	93.09±0.28	94.05±0.11	$93.28_{\pm 0.40}$	$80.52_{\pm 0.13}$	$76.28 \scriptstyle \pm 0.14$	92.71±0.23	$83.34{\scriptstyle\pm0.46}$	97.79	95.22
Wood	90.65±0.10	90.59±0.07	$94.49_{\pm 0.03}$	96.65±0.01	96.56 ± 0.02	93.51±0.03	$95.00{\scriptstyle \pm 0.04}$	92.24	94.96
Zipper	$96.80{\scriptstyle \pm 0.02}$	$97.01{\scriptstyle\pm0.05}$	$98.41{\scriptstyle\pm0.09}$	$99.08 \scriptstyle \pm 0.02$	$99.06 \scriptstyle \pm 0.01$	97.71±0.06	$98.98{\scriptstyle \pm 0.01}$	97.50	99.07
Average	96.31	96.46	97.87	97.36	96.86	97.06	96.90	97.59	98.16

• [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)

Task	Localiz	ation	Detection				Localization			
Encoder	ResNet-18			EffNetB4			WideResNet-50			
Class/Model	CutPaste	Ours	CutPaste	Ours	CutPaste	Ours	SPADE	PaDiM	Ours	
Bottle	97.6	98.64	98.3	100.00	100.0	100.0	(98.4, 95.5)	(98.3, 94.8)	(98.98, 96.80)	
Cable	90.0	96.75	80.6	97.62	96.2	97.59	(97.2, 90.9)	(96.7, 88.8)	(97.64, 93.53)	
Capsule	97.4	98.62	96.2	93.15	95.4	97.68	(99.0, 93.7)	(98.5, 93.5)	(98.98, 93.40)	
Carpet	98.3	99.29	93.1	98.20	100.0	98.73	(97.5, 94.7)	(99.1, 96.2)	(99.25, 97.70)	
Grid	97.5	98.53	99.9	98.97	99.1	99.60	(93.7, 86.7)	(97.3, 94.6)	(98.99, 96.08)	
Hazelnut	97.3	98.81	97.3	99.91	99.9	99.98	(99.1 , 95.4)	(98.2, 92.6)	(98.89, 96.68)	
Leather	99.5	99.51	100.0	100.00	100.0	100.0	(97.6, 97.2)	(98.9, 88.8)	(99.66, 99.35)	
Metal Nut	93.1	97.59	99.3	98.45	98.6	99.26	(98.1, 94.4)	(97.2, 85.6)	(98.56, 91.65)	
Pill	95.7	98.34	92.4	93.02	93.3	96.82	(96.5, 94.6)	(95.7, 92.7)	(98.95, 95.39)	
Screw	96.7	98.40	86.3	85.94	86.6	91.89	(98.9, 96.0)	(98.5, 94.4)	(98.86, 95.30)	
Tile	90.5	95.80	93.4	98.40	99.8	99.88	(87.4, 75.9)	(94.1, 86.0)	(98.01, 94.34)	
Toothbrush	98.1	99.00	98.3	99.86	90.7	99.65	(97.9, 93.5)	(98.8, 93.1)	(98.93, 95.06)	
Transistor	93.0	97.69	95.5	93.04	97.5	95.21	(94.1, 87.4)	(97.5, 84.5)	(97.99, 81.40)	
Wood	95.5	95.00	98.6	98.59	99.8	99.12	(88.5, 97.4)	(94.9, 91.1)	(96.65, 95.79)	
Zipper	99.3	98.98	99.4	96.15	99.9	98.48	(96.5, 92.6)	(98.5, 95.9)	(99.08 , 96.60)	
Average	96.0	98.06	95.2	96.75	97.1	98.26	(96.0, 91.7)	(97.5, 92.1)	(98.62 , 94.60)	

• Experimental results (comparison with other AD models (AUROC, AUPRO))

- [1] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows (WACV 2022)
 - Experimental results (anomaly localization results)

Thank you for listening

