#### **Multi-view Stereo for 3D Reconstruction**

Hosung Son Vision & Display Systems Lab. Dept. of Electronic Engineering, Sogang University

# Outline

- Introduction
  - Usage of depth estimation
  - Two-view Stereo & Multi-view Stereo
- Background
  - Stereo Matching
  - Feature Descriptors/Matching Algorithms
  - Camera Parameters
  - Homography
  - Matching Cost Volume
- MVSNet (ECCV2018)
- CVP-MVSNet (CVPR2020 Oral)
- PatchmatchNet (CVPR2021 Oral)





- Usage of depth estimation
  - AR



#### • Autonomous Driving

• 3D Scene Reconstruction





#### • 3D Scanning







- Two-view Stereo
  - It is similar to Human vision system Fuses a pair of images to get sensation of depth.







• Multi-view Stereo



- Interrupted by Occlusion, Non-Lambertian, Reflection, textureless...etc.
- Number of view-points  $\Box$  Sparse?
- Is deep learning-based model always better than traditional MVS algorithm?





• Quality difference between using 3 or 4 images to reconstruct each 3d points.







Using 4 images

- Input images Using 3 images • Camera Poses were extracted by Structure-from-Motion(SfM).
- Dense 3D scene was reconstructed by MVS method.





#### Background • Stereo Matching R=I, t=(T, 0, 0) $\therefore E = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$ $(u', v', 1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = 0$ Rectification (with Homography) $(u', v', 1) \begin{pmatrix} 0 \\ -T \\ T \\ n \end{pmatrix} = 0, Tv' = Tv$ X Unrectified X $\frac{x}{f} = \frac{B_1}{z} \qquad \frac{-x'}{f} = \frac{B_2}{z}$ $\frac{x-x'}{f} = \frac{B_1 + B_2}{z}$ Ζ Rectified $B_1$ Ba $disparity = x - x' = \frac{B \cdot f}{a}$ Baseline O'0



From Epipolar constraint,





B

- Feature(key points) descriptors
  - Harris Corner Detector
    - Traditional Method since 1988.
    - Invariant for translation, illumination and rotation.
    - Variant for scaling.
    - Move fixed size window with 1 px







**Moving windows** 

"flat" region: no change in all directions "edge": no change along the edge direction

"corner": significant change in all directions

• Compute SSD(Sum of Squared Difference) each state and define locally maximum min(E) as "Corner".

$$\begin{split} E(\Delta x,\Delta y) &= \sum_{W} \left[ I(x_{i} + \Delta x_{i}y_{i} + \Delta y) - I(x_{i},y_{i}) \right]^{2} \\ R &= det(M) - k^{*}tr(M)^{2} \lambda_{2} \\ I(x_{i} + \Delta x_{i}y_{i} + \Delta y) \approx I(x_{i},y_{i}) + \left[ I_{x}(x_{i},y_{i}) I_{y}(x_{i},y_{i}) \right] \left[ \frac{\Delta x}{\Delta y} \right] \\ E(\Delta x,\Delta y) &= \sum_{W} \left[ I(x_{i} + \Delta x_{i}y_{i} + \Delta y) - I(x_{i},y_{i}) \right]^{2} \\ R &\geq 0 \\ \approx \sum_{W} \left[ I(x_{i},y_{i}) + \left[ I_{x}(x_{i},y_{i}) I_{y}(x_{i},y_{i}) \right] \left[ \frac{\Delta x}{\Delta y} \right] - I(x_{i},y_{i}) \right] \left[ \frac{\Delta x}{\Delta y} - I(x_{i},y_{i}) I_{y}(x_{i},y_{i}) \right]^{2} \\ = \left[ \Delta x \Delta y \right] \left[ \sum_{W} I_{x}(x_{i},y_{i}) I_{y}(x_{i},y_{i}) \sum_{W} I_{y}(x_{i},y_{i})^{2} \right] \left[ \Delta x \\ \Delta y \end{bmatrix} \\ = \left[ \Delta x \Delta y \right] M \left[ \frac{\Delta x}{\Delta y} \right] \end{split}$$





- Feature(key points) Descriptors
  - SIFT (Scale-Invariant Feature Transform)
    - Invariant for rotation, illumination, translation, scaling.
    - Algorithm
      - 1. Make Scale Space
        - (1) 4 stages : 2x, original,  $\frac{1}{2}$ ,  $\frac{1}{4}$  size images





Matching example with SIFT



Removing bad key points



- ② Generally Blurring them with Gaussian Filtering
- 2. Computing DoG(Difference of Gaussian) with 3 images in each stage

$$D(\mathbf{x}) = D + \frac{\partial D^T}{\partial \mathbf{x}} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial^2 \mathbf{x}^2} \mathbf{x}$$

- 3. Finding key points
- 4. Remove bad key points  $R = tr(\mathbf{H})^2/\det(\mathbf{H}),$ If  $R > \frac{(r_{th}+1)^2}{r_{th}}$ , It is Poor.  $(r_{th}=10)$
- SURF (Speed-Up Robust Features)
  - Faster, more robust method.







- Feature(key points) Matching
  - Brute Force Matcher
    - In BF Matcher, we have to match descriptor of all features in an image to descriptors of all features in another image.
    - It is extremely expensive, however, doesn't guarantee getting an optimal solution.
  - RANSAC (RANdom Sample Consensus)
    - Randomly choose some samples and make a model with them.
    - Compute distance and count the number of samples which loss is lower than threshold.
    - Select a model which has the maximum number of consensus iteratively.







- Camera Parameters
  - Intrinsic

$$-K = \begin{bmatrix} f_x & \gamma & c_x & 0\\ 0 & f_y & c_y & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \leftarrow \text{Camera Calibration}$$

- Extrinsic camera parameters

$$-\begin{bmatrix} R_{3\times 3} & t_{3\times 1} \\ O_{1\times 3} & 1 \end{bmatrix}_{4\times 4}$$

- $R_{3\times3}$  : Rotation matrix
- $t_{3 \times 1}$  : Translation vector
- Essential Matrix (E)

 $E = R[t]_{\times}$ 

서강대한고

SOGANG UNIVERSITY

• Fundamental Matrix (F)

8-point Algorithm  $F = (K^T)^{-1} E K^{-1}$ 



**Epipolar Geometry** 



Homography

$$\mathbf{H}_{i}(d) = \mathbf{K}_{i} \cdot \mathbf{R}_{i} \cdot \left(\mathbf{I} - \frac{(\mathbf{t}_{1} - \mathbf{t}_{i}) \cdot \mathbf{n}_{1}^{T}}{d}\right) \cdot \mathbf{R}_{1}^{T} \cdot \mathbf{K}_{1}^{T} \quad s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Homography matrix is a relation between two planar surface in space.
- There are diverse practical applications such as image rectification, registration.

 $\hat{\mathbf{n}}_0 \cdot \mathbf{p} + c_0 = 0$ 

 $1 = (x_1, y_1, 1)$ 





planar surface and image plane

viewed by two camera positions

Rotating camera, arbitrary world



rotating camera and image stitching

• *H* is 3 by 3 matrix with 8 DoF since it is generally normalized.

 $(x_0, y_0, 1)$ 

 $h_{33} = 1 \text{ or } h_{11}^2 + h_{12}^2 + h_{13}^2 + h_{21}^2 + h_{22}^2 + h_{23}^2 + h_{31}^2 + h_{32}^2 + h_{33}^2 = 1$ 









#### • Matching Cost Volume

- Plane-sweep algorithm (aggregation function : ZNCC)
  - Map each target image  $I_k$  to the reference image  $I_{ref}$  for each depth plane  $\Pi_m$  with the homography  $H_{\Pi_m, P_k}^{-1}$  giving the warped image  $\check{I}_{k,m}$
  - Compute the <u>similarity</u> between  $I_{ref}$  and each  $\check{I}_{k,m}$  using Zero-mean Normalized Cross Correlation(ZNCC) between small patches W around each pixel.
  - Compute the figure-of-merit for each depth plane by combining the similarity measurements for each image *k*

$$M(\mathbf{u},\mathbf{v},\Pi_m) = \sum_{k} ZNCC(I_{ref}, \check{I}_{k,m})$$

- For each pixel, select the <u>depth plane</u> with best fit

$$\widetilde{\Pi}(u,v) = \operatorname{argmax} M(u,v,\Pi_m)$$

$$T_{i=1}^{f}(f_i - f_i)^2 \sum_{l=1}^{MN}(g_l - \bar{g})^2$$
we lintensity of  $L_{r,c}$ ,  $f_i$ : mean of  $L_{r,c}$  intensity.

 $g_i: i^{th}$  pixel intensity of  $I_{km}$ , f: mean of  $I_{km}$  intensity



Comparison of Various Stereo Vision Cost Aggregation Methods : https://www.ijeit.com/vol%202/Issue%208/IJEIT1412201302\_45.pdf





f.: ith pi

### MVSNet (ECCV2018)

• Standard Multi-view Stereo Network for 3D reconstruction



$$\begin{aligned} \mathbf{H}_{i}(d) &= \mathbf{K}_{i} \cdot \mathbf{R}_{i} \cdot \left(\mathbf{I} - \frac{(\mathbf{t}_{1} - \mathbf{t}_{i}) \cdot \mathbf{n}_{1}^{T}}{d}\right) \cdot \mathbf{R}_{1}^{T} \cdot \mathbf{K}_{1}^{T} \\ \mathbf{C} &= \mathcal{M}(\mathbf{V}_{1}, \cdots, \mathbf{V}_{N}) = \frac{\sum_{i=1}^{N} (\mathbf{V}_{i} - \overline{\mathbf{V}_{i}})^{2}}{N} \\ \mathbf{D} &= \sum_{d=d_{min}}^{d_{max}} d \times \mathbf{P}(d) \\ Loss &= \sum_{p \in \mathbf{p}_{valid}} \underbrace{\|d(p) - \hat{d}_{i}(p)\|_{1}}_{Loss0} + \lambda \cdot \underbrace{\|d(p) - \hat{d}_{r}(p)\|_{1}}_{Loss1} \end{aligned}$$

(a) Reference image (b) Inferred depth map (c) Probability distribution (d) Probability Map Illustration of inferred depth map, Probability distributions and probability Map

**거강대학교** SOGANG UNIVERSITY



14



### MVSNet (ECCV2018)

- Matching cost volume with Feature map variance
  - $C = M(V_1, \cdots, V_N) = \frac{1}{N} \sum_{i=1}^N (V_i \overline{V}_i)^2$ ,  $V_i$ :  $i^{th}$  warped feature volumes
  - Setting Mean of Squared Difference to Cost volume
- Depth Refinement
  - Depth residual learning at the end of Network.
  - Use reference image as a guidance to refine the initial depth map.
  - Concatenate the initial depth map and resized reference image as a 4-channel input

 $\rightarrow$  Pass to the <u>three</u> 32-channel 2D CNN layers to learn the depth residual.

- Add the residual and initial depth map, finally generate refined depth map.
- Limitations
  - Computational Cost (GPU Memory demand : around 11GB)
  - Time consuming (takes 230s for one scan  $\rightarrow$  4.7s per view)
  - Occlusion







Contribution

- <u>Computational efficient</u> depth inference network for MVS.
- Cost volume pyramid in a <u>coarse-to-fine manner</u>.
- <u>6x-faster</u> than current SOTA & <u>better accuracy</u>.





#### • Cost Volume Pyramid

- Common MVS methods generate a Cost volume with fixed resolution to inference depth map.
- Instead, proposed method generate multi-level Cost volume pyramid.
- Estimate depth for each cost volumes and refine them using residual depth iteratively.
- The resolution of depth map increases generally.

 $\rightarrow$  High resolution depth map with high accuracy.

• Cost volume equation at level L

$$\mathbf{C}_{d}^{L} = \frac{1}{(N+1)} \sum_{i=0}^{N} (\tilde{\mathbf{f}}_{i,d}^{L} - \bar{\mathbf{f}}_{d}^{L})^{2}$$

• Similar to MVSNet, 3D convolution was applied to the constructed cost volume pyramid and output Depth Probability Map P(d) from *softmax* operation. (*d*: sampled depth plane)





#### • Depth Map Inference

Coarse Depth map

$$\mathbf{D}^{L}(\mathbf{p}) = \sum_{m=0}^{M-1} d\mathbf{P}_{\mathbf{p}}^{L}(d)$$

-  $L^{th}$  level Depth estimate for each pixel **p** 

$$-d = d_{min} + m(d_{max} - d_{min})/M$$
 : sampled depth

• Refined Depth map

$$\mathbf{D}^{l}(\mathbf{p}) = \mathbf{D}^{l+1}_{\uparrow}(\mathbf{p}) + \sum_{m=-M/2}^{(M-2)/2} r_{\mathbf{p}} \mathbf{P}^{l}_{\mathbf{p}}(r_{\mathbf{p}})$$

$$-l \in \{L - 1, L - 2, \cdots, 0\}$$

 $-r_p = m \cdot \Delta d_p^l$ : depth residual hypothesis ( $m \in \{0, 1, 2, \dots, M-1\}, M = 48$  at experiment)

- No depth map refinement after proposed pyramidal depth estimation can obtain good results.

Loss Function

$$Loss = \sum_{l=0}^{L} \sum_{\mathbf{p} \in \Omega} \|\mathbf{D}_{GT}^{l}(\mathbf{p}) - \mathbf{D}^{l}(\mathbf{p})\|_{1}$$





#### Performance

| Method          | Input Size | Depth Map Size | Acc.(mm) | Comp.(mm) | Overall(mm) | f-score(0.5mm) | GPU Mem(MB) | Runtime(s) |
|-----------------|------------|----------------|----------|-----------|-------------|----------------|-------------|------------|
| Point-MVSNet[5] | 1280x960   | 640x480        | 0.361    | 0.421     | 0.391       | 84.27          | 8989        | 2.03       |
| Ours-640        | 640x480    | 640x480        | 0.372    | 0.434     | 0.403       | 82.44          | 1416        | 0.37       |
| Point-MVSNet[5] | 1600x1152  | 800x576        | 0.342    | 0.411     | 0.376       | -              | 13081       | 3.04       |
| Ours-800        | 800x576    | 800x576        | 0.340    | 0.418     | 0.379       | 86.82          | 2207        | 0.49       |
| MVSNet[42]      | 1600x1152  | 400x288        | 0.396    | 0.527     | 0.462       | 78.10          | 22511       | 2.76       |
| R-MVSNet[43]    | 1600x1152  | 400x288        | 0.383    | 0.452     | 0.417       | 83.96          | 6915        | 5.09       |
| Point-MVSNet[5] | 1600x1152  | 800x576        | 0.342    | 0.411     | 0.376       | -              | 13081       | 3.04       |
| Ours            | 1600x1152  | 1600x1152      | 0.296    | 0.406     | 0.351       | 88.61          | 8795        | 1.72       |

#### - Comparison of reconstruction quality

| • Metric                                                                                                                           |               |                          |                      |              |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|----------------------|--------------|--|
| f - score:                                                                                                                         |               |                          |                      |              |  |
| $e_{r  ightarrow \mathcal{G}} = \min_{g \in \mathcal{G}}  r - g , e_{g  ightarrow \mathcal{R}} = \min_{r \in \mathcal{R}}  g - r $ |               |                          | THE HULL             | ha ha        |  |
| $P(d) = rac{100}{ \mathcal{R} } \sum_{r \in \mathcal{R}} [e_{r  ightarrow \mathcal{G}} < th{rs.}]$                                |               |                          |                      |              |  |
| $\mathbb{R}(d) = rac{100}{ g } \sum_{g \in \mathcal{G}} [e_{g \to \mathcal{R}} < thrs.]$                                          | R-MVSNet [43] | Point-MVSNet [5]         | Ours                 | Ground truth |  |
| $F(d) = \frac{2P(d)R(d)}{P(d)+R(d)}$                                                                                               | (             | Qualitative results of s | scan 9 of DTU datase | t.           |  |

Accuracy: Distance from estimated point clouds to the ground truth ones.

Completeness: Distance from ground truth point clouds to the estimated ones.







- Network Structure
  - Refrain from parameterizing the <u>per-pixel hypothesis</u> as a slanted plane.
  - Instead, adaptive evaluation was used to organize the spatial pattern within the window over which matching costs are computed.
- 3-steps in Learning-based Patchmatch
  - 1. Initialization and Local Perturbation: generate random hypotheses.
  - 2. <u>Adaptive</u> propagation: propagate hypotheses to neighbors.
  - 3. <u>Adaptive</u> evaluation: compute the matching costs for all hypotheses, choose best solutions.







#### Implementation Details

- Image resolution :  $640 \times 512$
- # of input images : N=5
- Iteration # of Patchmatch on stage 3, 2, 1 : 2, 2, 1
- $R_3 = 0.38, R_2 = 0.09, R_1 = 0.04$
- $N_3 = 16, N_2 = N_1 = 8$
- $K_p$  on stage 3, 2, 1 : 16, 8, 0

#### • Initialization

• First, sample per pixel  $D_f$  depth hypotheses in the *inverse* depth range.

 $\rightarrow$ It helps model be applicable to complex and large-scale scenes.

- Divide the range into  $D_f$  intervals and ensure that each interval is covered by one hypothesis.
- Local Perturbation
  - Generating per pixel  $N_k$  hypotheses uniformly in the normalized inverse depth range  $R_k$ .
  - Decrease gradually  $R_k$  for finer stage.
  - Sampling around the previous estimation can refine result locally and correct wrong estimates.





- Adaptive Propagation
  - Based on Deformable Convolution Networks.
    - DCN : offset based flexibly sampling along with Convolution Networks.
  - To gather  $K_p$  depth hypothesis for pixel **p** in the reference image, model learns <u>additional 2D</u> <u>offsets</u>  $\{\Delta \mathbf{o}_i(\mathbf{p})\}_{i=1}^{K_p}$  that are applied on top of <u>fixed 2D offsets</u>  $\{\mathbf{o}_i\}_{i=1}^{K_p}$  organized as a grid.
  - Apply a <u>2D CNN</u> on the reference feature map  $\mathbf{F}_0$  to learn additional 2D offsets for each pixel **p**.
  - Depth hypotheses  $\mathbf{D}_p(\mathbf{p})$  via bilinear interpolation:







**(b)** 

(c)

- reference image
- **Fixed sampling locations**
- Adaptive sampling locations





- Adaptive Evaluation
  - Differentiable Warping
  - Matching cost computation
    - Group-wise correlation
      - 1.  $F_0(\mathbf{p}), F_i(\mathbf{p}_{i,j})$ : features in the ref, src feature maps. (view i, j th set of depth hypothesis)
      - 2. divide feature maps' feature channels evenly into G groups.
      - 3.  $\langle \cdot, \cdot \rangle$ : inner product
      - 4.  $S_i(\mathbf{p}, j)^g = \frac{G}{c} \langle \mathbf{F}_0(\mathbf{p})^g, \mathbf{F}_i(\mathbf{p}_{i,j})^g \rangle \in \mathbb{R}^G : g^{th} \text{ group similarity (C: # of channel)}$
    - Pixel-wise view weight network
      - 1. Composed of 3D convolution layers with 1x1x1 kernels and sigmoid.
      - 2. Takes the initial set of similarities  $S_i$  to output a number between 0 and 1 per pixel and depth hypothesis.
      - 3.  $w_i(\mathbf{p}) = \max\{\mathbf{P}_i(\mathbf{p}, j) | j = 0, 1, \dots, D 1\}$ : view weights for pixel  $\mathbf{p}$  and source image  $I_i$

4. 
$$\overline{S}(\mathbf{p}, j) = \frac{\sum_{l=1}^{N-1} w_l(\mathbf{p}) \cdot S_l(\mathbf{p}, j)}{\sum_{l=1}^{N-1} w_l(\mathbf{p})}$$
: final per group similarities for pixel  $\mathbf{p}$  and  $j^{th}$  hypothesis

- 5. Finally, compose  $\overline{S}(\mathbf{p}, j)$  for all pixels and hypothesis into  $\overline{S} \in \mathbb{R}^{W \times H \times D \times G}$
- 6. Apply a small network with 3D convolution and  $1 \times 1 \times 1$  kernels to obtain single cost  $\mathbf{C} \in \mathbb{R}^{W \times H \times D}$



- Adaptive Evaluation
  - Adaptive spatial cost aggregation
    - $K_e$ : spatial window

object boundary

textureless area



(a) reference image

(b)

- (b) Fixed sampling locations
- (c) Adaptive sampling locations





(b) textureless region

-  $w_k$ : feature weight at a pixel **p** based on the feature similarity.

-  $d_k$ : depth weight based on the similarity of depth hypotheses.

- Aggregated spatial cost:

$$\tilde{\mathbf{C}}(\mathbf{p},j) = \frac{1}{\sum_{k=1}^{K_e} w_k d_k} \sum_{k=1}^{K_e} w_k d_k \mathbf{C}(\mathbf{p} + \mathbf{p}_k + \Delta \mathbf{p}_k, j)$$

- Depth regression
  - Apply *softmax* to (negative) cost  $\tilde{C}$  to generate a probability **P**.
  - <u>Regressed depth</u> value at pixel **p**:

$$\mathbf{D}(\mathbf{p}) = \sum_{j=0}^{D-1} d_j \cdot \mathbf{P}(\mathbf{p}, j)$$

Visualization of adaptive propagation of two typical situations



Cost volume regularization schemes (d) Captures context in all dimensions by using 3D CNN





어강 CH 학교 Sogang University

#### • Performance



| Comparison with | SOTA | learning | based | MVS | methods |
|-----------------|------|----------|-------|-----|---------|
|-----------------|------|----------|-------|-----|---------|

| Methods          | Acc.(mm) | Comp.(mm) | Overall(mm) |
|------------------|----------|-----------|-------------|
| Camp [4]         | 0.835    | 0.554     | 0.695       |
| Furu [15]        | 0.613    | 0.941     | 0.777       |
| Tola [35]        | 0.342    | 1.190     | 0.766       |
| Gipuma [16]      | 0.283    | 0.873     | 0.578       |
| SurfaceNet [20]  | 0.450    | 1.040     | 0.745       |
| MVSNet [42]      | 0.396    | 0.527     | 0.462       |
| R-MVSNet [43]    | 0.383    | 0.452     | 0.417       |
| CIDER [39]       | 0.417    | 0.437     | 0.427       |
| P-MVSNet [28]    | 0.406    | 0.434     | 0.420       |
| Point-MVSNet [6] | 0.342    | 0.411     | 0.376       |
| Fast-MVSNet [44] | 0.336    | 0.403     | 0.370       |
| CasMVSNet [17]   | 0.325    | 0.385     | 0.355       |
| UCS-Net [7]      | 0.338    | 0.349     | 0.344       |
| CVP-MVSNet [41]  | 0.296    | 0.406     | 0.351       |
| Ours             | 0.427    | 0.277     | 0.352       |

Results on DTU's evaluation set (lower is

better)





