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Introduction

» Usage of depth estimation

* AR * 3D Scene Reconstruction * 3D Scanning
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e Autonomous Driving
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Introduction

* Two-view Stereo

« It 1s similar to Human vision system Fuses a pair of images to get sensation of depth.

Disparity

Reconstruction
(Reprojection)

Depth cue loss due to many factors such
as occlusion from difference viewpoint,
reflection, textureless and others.
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Introduction

e Multi-view Stereo

« Interrupted by Occlusion, Non-Lambertian, Reflection, textureless...etc.

« Number of view-points [ Sparse?

- Is deep learning-based model always better than traditional MVS algorithm?
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Introduction

* Quality difference between using 3 or 4 images to reconstruct each 3d points.

Input images Using 3 images Using 4 images
« Camera Poses were extracted by Structure-from-Motion(SfM).

» Dense 3D scene was reconstructed by MVS method.
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Background

* Stereo Matching
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Background

* Feature(key points) descriptors

Moving windows

« Harris Corner Detector
« Traditional Method since 1988.

« Invariant for translation, illumination and rotation.

-

« Variant for scaling.

“flat” region: “edge™ “corner™:
. . . no change in all no change along the significant change in
* Move fixed size window with 1 px directions edge direction all directions

« Compute SSD(Sum of Squared Difference) each state and define locally maximum min(E) as “Corner”.

E(AxAy)= ¥ [H(x+Axy; +Ay)-1(x,3,)] ’ R=det(M)-k*tr(M)? 3,
W

10+ +by) () L) 1] s | det(M) =My 2,

E(AxAy)= ¥ [ +Axy; +Ap)-I0x.p)]° r(M)=21 + A,
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Background

= Feature(key points) Descriptors

 SIFT (Scale-Invariant Feature Transform)

« Invariant for rotation, illumination, translation, scaling.

+ Algorithm

1.

()

Make Scale Space

@ 4 stages : 2x, original, %, Y4 size images
@  Generally Blurring them with Gaussian Filtering

Computing DoG(Difference of Gaussian) with 3 images in each stage

apT 1 32D
D(x) =D +—x+=xT
() Ix 2 92x2

X
Finding key points
Remove bad key points

R = tr(H)?/det(H).

If R > 1t is Poor. (1,;,=10)

Tth

« SURF (Speed-Up Robust Features)

« Faster, more robust method.
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Matching example with SIFT

Level 4
Blurand  /54/16 resolution
subsample . Level 3
nd P\ 1/8 resolution

Blur al
subsample ' .. Level 2
i 1/4 resolution

Blur and
subsample
«j‘ Level 1
Blur and X 1/2 resolution
subsample
Level 0

Original
image

Difference of
Gaussian (DOG)

DoG Computation R :
Removing bad key points
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Background

 Feature(key points) Matching

« Brute Force Matcher

- In BF Matcher, we have to match descriptor of all features in an image to descriptors of all features
in another image.

- It is extremely expensive, however, doesn’t guarantee getting an optimal solution.
«RANSAC (RANdom Sample Consensus)

- Randomly choose some samples and make a model with them.

- Compute distance and count the number of samples which loss is lower than threshold.

- Select a model which has the maximum number of consensus iteratively.
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Background

o Camera Parameters

« Intrinsic

fx VvV & 0

-K=10 f, ¢, 0]|<€ Camera Calibration

0 0 1 O

-« Extrinsic camera parameters

_ [R3x3 t3x1

01)(3 1 4%X4

- R34 : Rotation matrix

- t3x1 : Translation vector

- Essential Matrix (E)
E = R[t]x

» Fundamental Matrix (F)
8-point Algorithm
F=(kKTh"1EKg-1
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intrinsic parameters

focal plane o114 frame

el image plane :
! e /
camera frame —T——__ -

extrinsic parameters

P(P’)
/"\

Epipolar Geometry
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Background

= Homography

ti b )nt
Hi(d):Kz"Ri'(I—(l 1)y

z T hyy hys hys
T T sl |=H

- )'RI'KI- y y
1

has Yy
hsy hss hs

T
- h21 h22
1 1
- Homography matrix is a relation between two planar surface in space.
- There are diverse practical applications such as image rectification, registration.

Rotating camera, arbitrary world
\
Y

planar surface and image plane

viewed by two camera positions

- H 1s 3 by 3 matrix with 8 DoF since it is generally normalized.

rotating camera and image stitching
— 2 2 0152 L p2 L B2 L h2 o p2 o ]2 2 _
hsz = 1 or hiy + hi,+ hiz+ hy + ho,+ hos+ hy+ h3, + his =1
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Background

= Matching Cost Volume

= Plane-sweep algorithm (aggregation function : ZNCC)

- Map each target image I to the reference image I,..; for each depth plane II,,
with the homography Hﬁ:l. p, giving the warped image Ivk‘m

- Compute the similarity between /.5 and each Ivk,m using Zero-mean Normalized
Cross Correlation(ZNCC) between small patches W around each pixel.

- Compute the figure-of-merit for each depth plane by combining the similarity

measurements for each image k

M(u,v,TI,,) = Z INCC(Lres, T m)
k

- For each pixel, select the depth plane with best fit
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M(u,v) = argmax M(u,v,11,,,)

input image

‘composite
virtual camera

Composite homography after Plane-sweep

ZNCC =

MY Fi-Hgi-d)

-2 s ei-a)

fi:i™ pixel intensity of I, f: mean of 1.5 intensity

g 1" pixel intensity of I, f: mean of I, ,intensity

Reference camera Camera k
u =Kl | 0)X u' = Ki[Ry | t)X
H
U o — W
Kyer T T Ky
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xXe

Reference camera

u =K, [ |0]X

dy,

o

Camera k

u' = KilRy | t]X

x

Reference camera Camera k
u =K./l |0]X u' = Ky [Ry | )X
H
e —> [
| | &

T"mn
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Visualization of plane sweeping

Comparison of Various Stereo Vision Cost Aggregation Methods : https://www.ijeit.com/vol%202/Issue%208/1JEIT1412201302_45.pdf
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MYVSNet (ECCV2018)

e Standard Multi-view Stereo Network for 3D reconstruction

.
4
4§~&¢ 151!!\!va K (t; —t;)-nT
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(a) Reference image (b) Inferred depth map (c) Px obability dx mbun on (d) Probability Map

-~

Illustration of inferred depth map, Probability distributions and probability Map

a

Inferred depth map Filtered depth map GT depth map Reference image Fused point cloud GT point cloud
Results of MVSNet for DTU Dataset
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MYVSNet (ECCV2018)

= Matching cost volume with Feature map variance
1 —
«C = M(Vl, ty VN) = E}:?’zl(Vi - Vi)z , W it warped feature volumes

- Setting Mean of Squared Difference to Cost volume
* Depth Refinement
« Depth residual learning at the end of Network.
- Use reference image as a guidance to refine the initial depth map.

- Concatenate the initial depth map and resized reference image as a 4-channel input

—> Pass to the three 32-channel 2D CNN layers to learn the depth residual.
« Add the residual and initial depth map, finally generate refined depth map.
 Limitations
« Computational Cost (GPU Memory demand : around 11GB)
« Time consuming (takes 230s for one scan = 4.7s per view)

» Occlusion
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CVP-MVSNet (CYPR2020 Oral)
* Network Structure

Image Pyramid Feature = Feature
- - Extraction  Maps
( =
|
|
LAN
{Ii }ito

Init Depth Hypo.

Cost Volume Probability
Pyramid Volume
r==:

DL

Upsample

= ]

mmm 3X3 Conv,c=64,s=1+Leaky ReLU
= 3X3 Conv,c=32,s=1+Leaky ReLU
= 3X3 Conv,c=16,s=1+Leaky ReLU
e Contribution

- Computational efficient depth inference network for MVS.

- Cost volume pyramid in a coarse-to-fine manner.

» 6x-faster than current SOTA & better accuracy.
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CVP-MVSNet (CVPR2020 Oral)

« Cost Volume Pyramid
- Common MVS methods generate a Cost volume with fixed resolution to inference depth map.
- Instead, proposed method generate multi-level Cost volume pyramid.
- Estimate depth for each cost volumes and refine them using residual depth iteratively.

= The resolution of depth map increases generally.

—> High resolution depth map with high accuracy.

« Cost volume equation at level L
N
1 ; _
Ch=——=) (B —T1)?
d (N+1) i:O( ’L,d d)

= Similar to MVSNet, 3D convolution was applied to the constructed cost volume pyramid and
output Depth Probability Map P(d) from softmax operation. (d: sampled depth plane)
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CVP-MVSNet (CVPR2020 Oral)

= Depth Map Inference
= Coarse Depth map

L. . - L
D'(p) = ) dPg(d)

- L™ level Depth estimate for each pixel p
-d = dmin + m(dmax - dmin)/M . sampled depth

= Refined Depth map

(M—-2)/2

D'(p) =D{'(p)+ Y rpPh(rp)
m:—]\/I/2

-le{L-1,L-2,-,0}
T, =m- Ad;, - depth residual hypothesis (m € {0,1,2,:-,M — 1}, M = 48 at experiment)
- No depth map refinement after proposed pyramidal depth estimation can obtain good results.

» Loss Function
L

Loss = Z Z ||D€3T(p) = Dl(p)||1

=0 pEQ
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CVP-MVSNet (CVPR2020 Oral)

e Performance

= Comparison of reconstruction quality

Method Input Size Depth Map Size  Acc.imm) Comp.(mm) Overalllmm) fscore(0.5mm) GPU Mem(MB) Runtime(s)
Point-MVSNet[ "] 1280x960 640x480 0.361 0.421 0.391 84.27 8989 2.03
Ours-640 640x480 640x480 0.372 0.434 0.403 82.44 1416 0.37
Point-MVSNet[5] | 1600x1152 800x576 0.342 0.411 0.376 - 13081 3.04
Ours-800 800x576 800x576 0.340 0.418 0.379 86.82 2207 0.49
MV SNet[- ] 1600x1152 400x288 0.396 0.527 0.462 78.10 22511 2.76
R-MV SNet[ 7] 1600x1152 400x288 0.383 0.452 0.417 83.96 6915 5.09
Point-MVSNet[5] | 1600x1152 800x576 0.342 0.411 0.376 - 13081 3.04
Ours 1600x1152 1600x1152 0.296 0.406 0.351 88.61 8795 172
« Metric
f — score:

erog =M |1 — g|. ey = min|g — 7]

F(d) =

P =1

100

2P(d)R(d)
P(d)+R(d)

Yrerlerg < thrs.]

Ygeglegor < thrs.]

R-MVSNet [47]

Point-MVSNet [5]

Ours

Qualitative results of scan 9 of DTU dataset.

Accuracy: Distance from estimated point clouds to the ground truth ones.

Completeness: Distance from ground truth point clouds to the estimated ones.
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At only Stage 3, random depth
hypotheses in mmalization are used.

PatchmatchNet (CVPR2021 Oral)

lnpul images, PatchMatch Depth Map r
_L P (sragc 3) (stage 3)
2k Lo | Upsampiing
3 - f: Patcl hMalch Depth Map )
| . & , (stage 2) (stage 2) "
g T Upsampling
| ) atchMatcl Depth Map ]
Depth Map 1 Shge L)
1 Upsampl

Reference
Feature

T
i
Klnitinlizaiion / - ] !
Local Perturbation gm“PWl N 1‘;‘ H : ’\ : Depth Regression
orrelati s H 1
Deplhlsamples : T
1
| Matching Cost Computation i Adaptive Spatial
._|- !
]

Features

Source

[~ Wamping Cost Aggregation ' Refinement Depth Map
""""""""" Vo i [I— ] (stage 0) (stage 0)
Depth|Samples ™ Max Pooling ] i)
. = | N
Adaptive - 1 USERET? ) Addition - '
P i - (— Multi-scale
k Sbd i Pixel-wise View Weight Aggreealed Matching Cost ( Multiplication I:f g
....... N depth prediction

Multi-scale feature extractor ~Reference image

e Network Structure

- Refrain from parameterizing the per-pixel hypothesis as a slanted plane.

- Instead, adaptive evaluation was used to organize the spatial pattern within the window over
which matching costs are computed.

e 3-steps in Learning-based Patchmatch
1. Initialization and Local Perturbation: generate random hypotheses.
2. Adaptive propagation: propagate hypotheses to neighbors.

3. Adaptive evaluation: compute the matching costs for all hypotheses, choose best solutions.

9
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PatchmatchNet (CVPR2021 Oral)

Reference ®

Feature

flnitinlimtion /

Source
Features

Cost Aggregation

—  Warping
Deplh]Samples

o-§B-0-o— -G
Adaptive Conelanon e U

\ Propagati d Feature Maps Pixel-wise View Weight ~ Aggregated Matching Cost

* Initialization

T

1

q H | -

Dcplhlsamples i T ‘ i
1

m . B Matching Cost Computation E Adaptive Spatial )
1

’—|_. : )

Implementation Details

Depth Map

:'\\7[ Max Pooling
() Addition

( Multiplication

Image resolution : 640X 512

# of input images : N=5

Iteration # of Patchmatch on stage 3.2.1:2,2.1
Dy =48

R3=0.38,R, = 0.09. R, = 0.04
N;=16.N,=N; =8

K, on stage 3,2.1: 16, 8.0

K,=9

- First, sample per pixel Dy depth hypotheses in the inverse depth range.

->1It helps model be applicable to complex and large-scale scenes.

- Divide the range into Dy intervals and ensure that each interval is covered by one hypothesis.

* [ocal Perturbation

- Generating per pixel N;, hypotheses uniformly in the normalized inverse depth range R, .

= Decrease gradually R;, for finer stage.

- Sampling around the previous estimation can refine result locally and correct wrong estimates.
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PatchmatchNet (CVPR2021 Oral)

= Adaptive Propagation
- Based on Deformable Convolution Networks.
- DCN : offset based flexibly sampling along with Convolution Networks.

- To gather K}, depth hypothesis for pixel p in the reference image, model learns additional 2D

offsets {Aoi(p)}ﬁ) , that are applied on top of fixed 2D offsets {oi}f;p , organized as a grid.

= Apply a 2D CNN on the reference feature map F, to learn additional 2D offsets for each pixel p.
- Depth hypotheses D), (p) via bilinear interpolation:

K
Dp(p) — {D(p + Oi _+_ Aoz(p))}zzp]_ < objc‘c%‘;undary
1 ., |
e e 0 ¢ ° > : o " s F ’ 7
: : o gl & ‘" 2 . @ o ‘ . . ° °
P . ® . . S ‘@ . 2 ~ -j
. ( a) textureless area (b ) (C )
@ ®) © @ (a) reference image
Illustration of the sampling locations in 3x3 standard and deformable (b) Fixed sampling locations

convolutions. (©) Adaptive sampling locations

.



PatchmatchNet (CVPR2021 Oral)

= Adaptive Evaluation
- Differentiable Warping

« Matching cost computation

- Group-wise correlation

N~

Fo(p). Fi(p; ;) : features in the ref, src feature maps. (view i,j — th set of depth hypothesis)

(3]

divide feature maps’ feature channels evenly into G groups.

3. <.,+>:mner product

B

S:(p,j)9= (C—;(Fo(p)g, F;i(p;;)9) € RE : g™ group similarity (C: # of channel)

- Pixel-wise view weight network

1.  Composed of 3D convolution layers with 1x1x1 kernels and sigmoid.
2 Takes the initial set of similarities S; to output a number between 0 and 1 per pixel and depth hypothesis.
3 wi(p) = max{P;(p,j)|j =0,1,--, D — 1} : view weights for pixel p and source image I;

YN wi(p)Si(p.j)

2 S(p,j) === - final per group similarities for pixel p and j** hypothesis

Tt wip)
5. Finally, compose S(p, j) for all pixels and hypothesis into S € RW*HXPxG
6.  Apply a small network with 3D convolution and 1x1x1 kernels to obtain single cost C € RW*#*D

q AT o ’s \")
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PatchmatchNet (CVPR2021 Oral)

d Adaptlve Evaluatlon object boundary xtureless area
L
- Adaptive spatial cost aggregation
- K,: spatial window
(a) (b) (c)
- wy,: feature weight at a pixel p based on the feature similarity. (a)  reference image
. o (b) Fixed sampling locations
- dj.: depth weight based on the similarity of depth hypotheses. (¢c)  Adaptive sampling locations
- Aggregated spatial cost:
1 =
C(p.j) = KQ—Z widy C(P+Pr+APk, j)
Zk:l widp o
= Depth regression
- Apply softmax to (negative) cost C to generate a probability P. (&) object boundary (b} textureless region
_ Regresse d dept h value at plxe 1 p: — Visuali:iltivon of adaptive p:o)f)vz:gation of two :yfvivcfll)situations
D-1 r iz :
D(p)= Y d;-P(p.}) a i
Ay [ MR B [ A ™ Gy (™
(a) Winner-take-all (b) Spatial regularization (c) Recurrent regularization (d) 3D CNN regularization

Cost volume regularization schemes
(d) Captures context in all dimensions by using 3D CNN

-»
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PatchmatchNet (CVPR2021 Oral)

¢ Performance

Methods Acc.(mm) Comp.(mm) Overall(mm)
0.55 @ | 055{ ¥ CasMVSNet @ Camp [4] 0835 0.554 0695
UCS-Net Furu [15] 0.613 0.941 0.777
_ @ CVP-MVSNet Tola [35] 0.342 1.190 0.766
E 050 0501 3¢ Fast-MVSNet Gipuma [16] 0.283 0.873 0.578
= @ R-MVSNet SurfaceNet [20] 0.450 1.040 0745
s & Mshet MVSNet [42] 0.396 0.527 0.462
0.5 0.451 5

& ® ouss R-MVSNet [43] 0.383 0.452 0417
7 ® @ CIDER [39] 0417 0.437 0.427
g P-MVSNet [28] 0.406 0.434 0.420
3 0.40 0.401 Point-MVSNet [6] 0.342 0.411 0.376
e = o Fast-MVSNet [44] 0.336 0.403 0370
CasMVSNet [17] 0325 0.385 0.355
035 . 223 b . UCS-Net [7] 0.338 0.349 0.344
2 4 6 8 10 0.00 0.25 0.50 0.75 1.00 1.25 1.50 CVBMYNELEHL 0e0e 0405 ool
GPU Mem. (GB) R e (4) Ours o.J’,27 0277 0352

Comparison with SOTA learning based MVS methods Results on DTU Sbi‘t,:l::;l tion set (lower is

— 60001
[2]
= 50001
£ 4000
[T}
= 30001
Z 2000
G

1000

1.254 ¥ CasMVSNet

—_

e UCS-Net
Qi =4
g @ CVP-MVSNet _—
§075{ O i e
< 0.504 —%
% 0.251
0.001—% : . - - ;
0 20 40 60 80 100

Resolution (%)

Source images

Reference image Pixel-wise view weight

Relating GPU memory and run-time to the input resolution Visualization of pixel-wise view weight on a scene from ETH3D
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