Towards Faster and Lighter Neural Network

심 재 헌

Vision & Display Systems Lab.

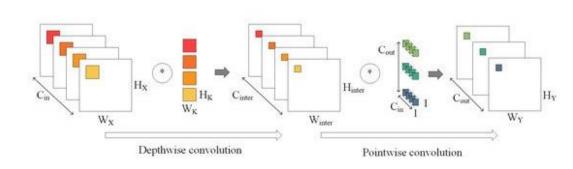
Dept. of Electronic Engineering, Sogang University

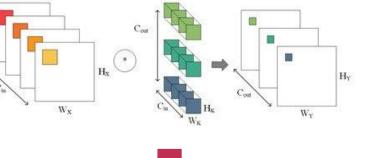
Outline

- Background
- MobileNeXt: Rethinking MobileNet
- Revisiting VGG structure
- RepVGG
- Conclusion

Background

- MobileNetV1: Depthwise Separable Convolution
 - Divide Standard Convolution into Depthwise & Pointwise Convolution
 - Parameters
 - Standard: $W_K \times H_K \times C_{out} \times C_{in}$
 - Depthwise: $(W_K \times H_K + C_{out}) \times C_{in}$
 - Computation
 - Standard: $W_K \times H_K \times C_{out} \times C_{in} \times W_Y \times H_Y$
 - Depthwise: $(W_K \times H_K + C_{out}) \times C_{in} \times W_Y \times H_Y$





Background

• ResNet: Bottleneck Layer

- Used in ResNet
 - Reduce & Increase dimension within skip layer
 - To reduce computation as layers get deeper

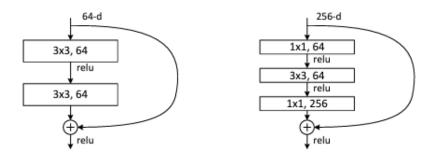
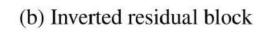


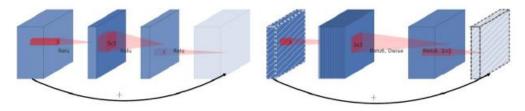
Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

Background

- MobileNetV2: Inverted Residual Block
 - Residual (Bottleneck) vs Inverted Residual
 - Reverse classical Residual Block

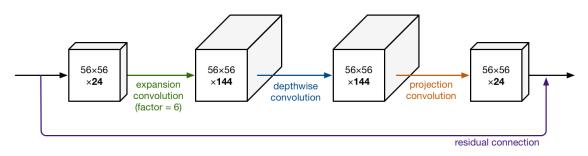
(a) Residual block





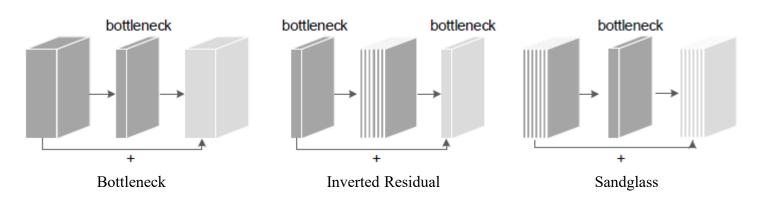
- Inverted Residual Block Structure

- Now a standard for many light-weight models (ex. ShuffleNet, EfficientNet, MobileNetV3 etc.)



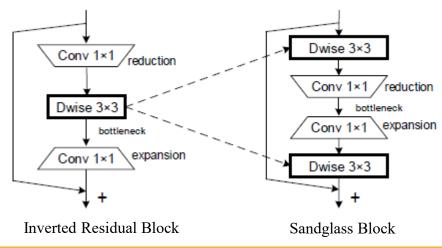
MobileNeXt: Rethinking MobileNet

- Problems with MobileNetV2
 - Identity mapping (Skip connection) between low-dimensional representations
 - Inevitable Information Loss
 - Weakened propagation capability of gradients across layers
- Solution: Sandglass Block
 - Move identity mapping to high-dimensional representations
 - Propagates more gradients during training
 - Improved model performance



MobileNeXt: Rethinking MobileNet

- Sandglass Block
 - Rethinking the positions of expansion and reduction layers
 - High-dimensional shortcuts
 - \Rightarrow Wider shortcuts \rightarrow more gradients propagate through multiple layers
 - Learning expressive spatial features
 - : Less spatial information encoded when Depthwise conv is placed in the bottleneck
 - : Depthwise convolution added at the beginning & end of bottleneck
 - Richer feature representation



MobileNeXt: Rethinking MobileNet

• MobileNeXt Architecture

Identity tensor multiplier

- No need to keep the whole identity tensor in the skip layer

– New hyper parameter: Identity tensor multiplier $\alpha \in [0,1]$

: Control which portion of the residual path is preserved

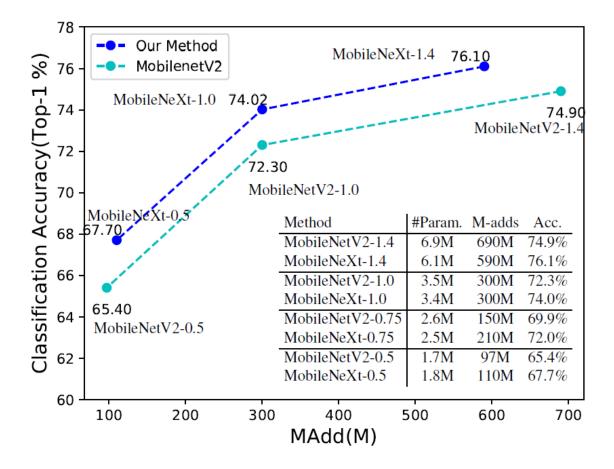
Advantages

- Reduced element-wise addition

sis better latency & almost no performance drop

- MAC (Memory Access Cost)
 - Si Need to store input feature for skip connection
 - sis Less channel, less MAC

• Comparison to MobileNetV2 on ImageNet Classification



• Performance with Quantization

Model	Precision (W/A)	Method	Top-1 Acc. (%)
MobileNetV2	INT8/INT8	Post Training Quant.	65.07
MobileNeXt	INT8/INT8	Post Training Quant.	68.62 _{+3.55}
MobileNetV2	FP32/FP32	-	72.25
MobileNeXt	FP32/FP32		$74.02_{\pm 1.77}$

- Effect of high-dimensional skip layer
 - Add additional depthwise conv to Inverted Residual Block in MobileNetV2

Method	#Dwise convs	Param. (M)	M-Adds (M)	Top-1 Acc. (%)
MobileNetV2	2 (middle)	3.6	340	73.02
MobileNeXt	2 (top, bottom)	3.5	300	74.02

• Superiority of Proposed Sandglass Block

Replace Inverted Residual Block with Sandglass Block from EfficientNet-b0

Models	Param. (M)	MAdd (M)	Top-1 Acc. (%)
MobilenetV1-1.0 [17]	4.2	575	70.6
MobilenetV2-1.0 [31]	3.5	300	72.3
MnasNet-A1 [34]	3.9	312	75.2
MobilenetV3-L-0.75 [16]	4.0	155	73.3
ProxylessNAS [1]	4.1	320	74.6
FBNet-B [38]	4.5	295	74.1
GhostNet-1.3 [10]	7.3	226	75.7
EfficientNet-b0 [35]	5.3	390	76.3
MobileNeXt-1.0	3.4	300	74.02
MobileNeXt-1.0 [†]	3.94	330	76.05
MobileNeXt-1.1 [†]	4.28	420	76.7

- Latency measurement
 - TF-Lite on Pixel 4XL

MobileNetV2	68ms
MobileNeXt	66ms

- Effect of Identity Tensor Multiplier
 - Higher or almost no degradation up to $\alpha = 1/3$

No.	Models	Tensor multiplier	Param. (M)	Top-1 Acc. (%)	Latency (ms)
1	MobileNeXt	1.0	3.4	74.02	211
2	MobileNeXt	1/2	3.4	74.09	196
3	MobileNeXt	1/3	3.4	73.91	195
4	MobileNeXt	1/6	3.4	73.68	188

Other Applications

- Object Detection
 - MobileNeXt as backbone, tested on Pascal VOC 2007

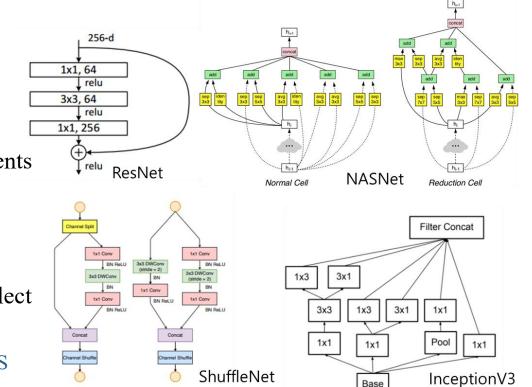
No.	Method	Backbone	Param. (M)	M-Adds (B)	mAP (%)
1	SSD300	VGG [33]	36.1	35.2	77.2
2	SSDLite320	MobileNetV2 [31]	4.3	0.8	71.7
3	SSDLite320	MobileNeXt	4.3	0.8	72.6

- Neural Architecture Search
 - Add Sanglass block to DARTS search space
 - Tested on CIFAR-10

No.	Search Space	Test Error (%)	Param. (M)	Search Method	#Operators
1	DARTS original	3.11	3.25	gradient based	7
2	DARTS + IR Block	3.26	3.29	gradient based	8
3	DARTS + sandglass block	2.98	2.45	gradient based	8

Problems with Recent CNN Architectures

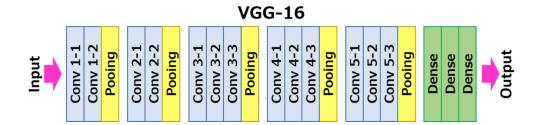
- Complicated Multi-branch Design
 - Residual connection (ResNet)
 - Branch concatenation (Inception, ShuffleNet)
 - Difficult implementation
- Inefficient Convolutional Components
 - Depthwise separable convolution (Xception, MobileNet)
 - Channel shuffle (ShuffleNet)
- FLOPs / # of parameters do not reflect inference time
 - ResNet: less parameters and FLOPS than VGG, yet slower



(c)

Revisiting VGG structure

- Advantages
 - Simple Structure
 - Only, 3x3 standard convolution and Pooling
 - Single branch (no skip layers)
 - Fast Inference Time
 - Simple operations optimized for hardware platform (e.g. cuDNN,)
 - Less Memory Access Cost
- Drawbacks
 - Low performance
 - Gradient vanishing without skip layer (VGG-16 72% Top 1 Acc on ImageNet)



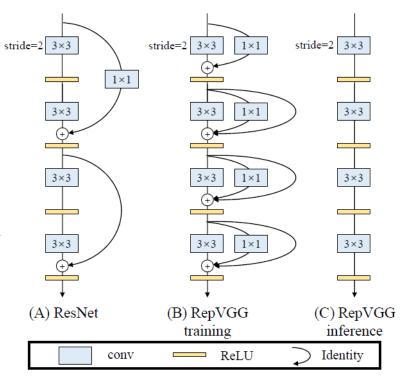
• RepVGG: Making VGG-style ConvNets Great Again

Decouple Training and Inference

- Use multi-branch Ensemble structure for training

Skip connection & 1x1 conv

- Exclude additional branch for fast inference
- Structural Re-parameterization
 - Transform multi-branch parameters to single-path inference model
 - Combine 3x3, 1x1, skip layer into one 3x3 conv



• Simple is Fast, Memory-economical, Flexible

• Fast

- VGG-16 has 8.4x FLOPs than EfficientNet-B3, yet 1.8x faster on 1080Ti

- Winograd Convolution

:5: 4/9 number of multiplication in 3x3 convolution

Supported in various hardware platforms (NVIDIA cuDNN, Intel MKL)

- MAC (Memory Access Cost) & parallelism

Sterrer Group conv & Multi-branch: Poor parallelism – high MACs

sets Fragmented operators hurt parallelism (e.g. NASNet-A 13 fragments)

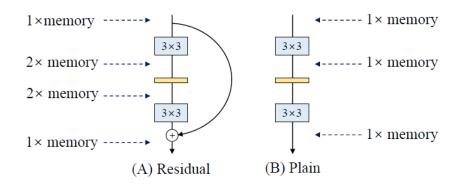
Kernel	Theoretical	Time	Theoretical
size	FLOPs (B)	usage (ms)	TFLOPS
1×1	420.9	84.5	9.96
3×3	3788.1	198.8	38.10
5×5	10522.6	2092.5	10.57
7×7	20624.4	4394.3	9.38

FLOPs & Time of Convolution Operators on 1080Ti GPU (TFLOPS: Tera Floating-point Operations Per Second)

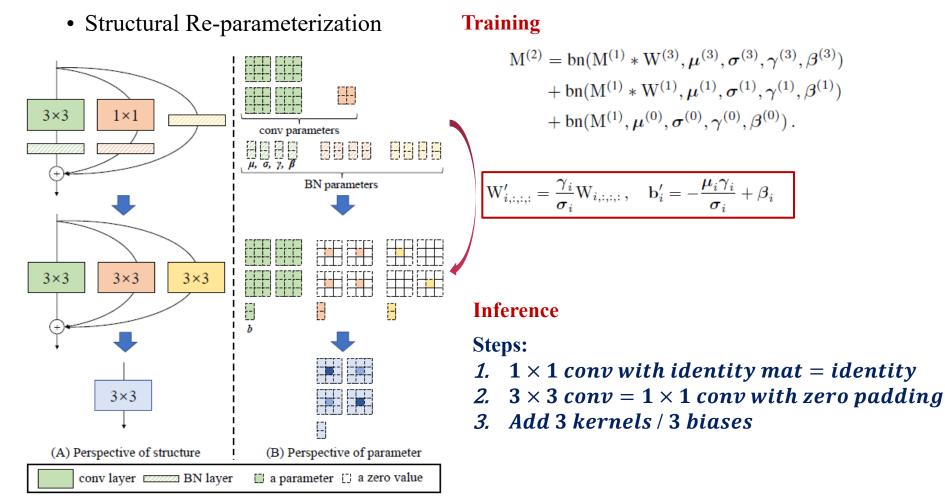
• Simple is Fast, Memory-economical, Flexible

- Memory-economical
 - Multi-branch keeps input feature until addition / concatenation
 - High memory occupation
- Flexible
 - Residual block low flexibility since input and output feature need to be the same size

- Limits channel pruning



Peak memory occupation in residual and plain block



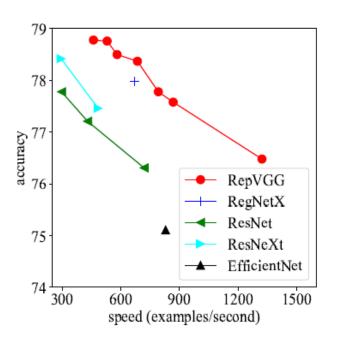
- Model Structure
 - Modification of classic settings of VGG
 - Different models according to width multiplier *a*, *b*
 - Only 3x3 conv and ReLU (no Max Pooling)
 - Groupwise convolution for further reduction of parameters and computation
 - RepVGG-A: 3^{rd} , 5^{th} , 7^{th} , ... 21^{st} layers
 - RepVGG-B: 3rd, 5th, 7th, ... 21st, 23rd, 25th, 27th layers

Stage	Output size	RepVGG-A	RepVGG-B
1	112×112	$1 \times \min(64, 64a)$	$1 \times \min(64, 64a)$
2	56×56	$2 \times 64a$	$4 \times 64a$
3	28×28	$4 \times 128a$	$6 \times 128a$
4	14×14	$14 \times 256a$	$16 \times 256a$
5	7×7	$1 \times 512b$	$1 \times 512b$

Table 2: Architectural specification of RepVGG. $E.g., 2 \times$ Table 3: RepVGG models defined by multipliers a and b.64a means stage2 has 2 layers each with 64a channels.NameLayers of each stageab

Name	Layers of each stage	a	b
RepVGG-A0	1, 2, 4, 14, 1	0.75	2.5
RepVGG-A1	1, 2, 4, 14, 1	1	2.5
RepVGG-A2	1, 2, 4, 14, 1	1.5	2.75
RepVGG-B0	1, 4, 6, 16, 1	1	2.5
RepVGG-B1	1, 4, 6, 16, 1	2	4
RepVGG-B2	1, 4, 6, 16, 1	2.5	5
RepVGG-B3	1, 4, 6, 16, 1	3	5

- ImageNet Classification
 - 1080Ti for speed eval
 - g: group convolution



Model	Top-1 acc	Speed	Params (M)	Theo FLOPs (B)	Wino MULs (B)
RepVGG-A0	72.41	3256	8.30	1.4	0.7
ResNet-18	71.16	2442	11.68	1.8	1.0
RepVGG-A1	74.46	2339	12.78	2.4	1.3
RepVGG-B0	75.14	1817	14.33	3.1	1.6
ResNet-34	74.17	1419	21.78	3.7	1.8
RepVGG-A2	76.48	1322	25.49	5.1	2.7
RepVGG-B1g4	77.58	868	36.12	7.3	3.9
EfficientNet-B0	75.11	829	5.26	0.4	-
RepVGG-B1g2	77.78	792	41.36	8.8	4.6
ResNet-50	76.31	719	25.53	3.9	2.8
RepVGG-B1	78.37	685	51.82	11.8	5.9
RegNetX-3.2GF	77.98	671	15.26	3.2	2.9
RepVGG-B2g4	78.50	581	55.77	11.3	6.0
ResNeXt-50	77.46	484	24.99	4.2	4.1
RepVGG-B2	78.78	460	80.31	18.4	9.1
ResNet-101	77.21	430	44.49	7.6	5.5
VGG-16	72.21	415	138.35	15.5	6.9
ResNet-152	77.78	297	60.11	11.3	8.1
ResNeXt-101	78.42	295	44.10	8.0	7.9

• Structural Re-parameterization is the Key

- DiracNet:
 - $-\widehat{W} = diag(a)I + diag(b)W_{norm}$
- Trivial Re-param:
 - Simpler version of DiracNet: $\widehat{W} = I + W$
- Asymmetric Conv Block (ACB)
- Residual Reorg

- Re-organize parameter in ResNet-like manner

Model	Identity branch	1×1 branch	Accuracy
RepVGG-B0			72.39
RepVGG-B0	\checkmark		74.79
RepVGG-B0		\checkmark	73.15
RepVGG-B0	\checkmark	\checkmark	75.14

Variant and baseline	Accuracy
Identity w/o BN	74.18
Post-addition BN	73.52
Full-featured reparam	75.14
+ReLU in branch	75.69
DiracNet [38]	73.97
Trivial Re-param	73.51
ACB [9]	73.58
Residual Reorg	74.56

Applications

- Semantic Segmentation
 - PSPNet framework with RepVGG backbone
 - Tested on CityScapes dataset
 - RepVGG-B1g2-fast / B2-fast:
 - 3x3 dilated convolution only in the last 5 layers for fair comparison

Backbone	Mean IoU	Mean pixel acc	Speed
RepVGG-B1g2-fast	78.88	96.19	10.9
ResNet-50	77.17	95.99	10.4
RepVGG-B1g2	78.70	96.27	8.0
RepVGG-B2-fast	79.52	96.36	6.9
ResNet-101	78.51	96.30	6.7
RepVGG-B2	80.57	96.50	4.5

Conclusion

- MoileNeXt: Rethinking Bottleneck Structure for Efficient Mobile Network Design
 - Rethink the previous design rules of Inverted Residual Block
 - Sandglass Block
 - Shortcut connection between high-dimensional inputs
 - Outperform conventional light-weight networks with Inverted Residual Blocks
- RepVGG: Making VGG-style ConvNets Great Again
 - Simple architecture with only 3x3 conv and ReLU
 - Train only Multi-branch structure
 - Structural Re-parameterization
 - Limitations
 - Although fast, simple and practical, less concerns for number of parameters
 - MobileNet, ShuffleNet may be favored for low powered devices

Reference

- Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." *arXiv preprint arXiv:1704.04861* (2017).
- Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.
- Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." *International Conference on Machine Learning*. PMLR, 2019.
- Zhou, Daquan, et al. "Rethinking bottleneck structure for efficient mobile network design." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23– 28, 2020, Proceedings, Part III 16. Springer International Publishing, 2020.
- Zagoruyko, Sergey, and Nikos Komodakis. "Diracnets: Training very deep neural networks without skip-connections." *arXiv preprint arXiv:1706.00388* (2017).
- Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks." *Proceedings* of the IEEE conference on computer vision and pattern recognition. 2016.
- Ding, Xiaohan, et al. "Repvgg: Making vgg-style convnets great again." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

