#### About small amounts of data

#### 김 현성

Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

# Outline

#### • Introduction

- Data and Deep learning
- How to deal with?
  - "Small" diversity of data
  - "Small" in some classes
  - Just "Small"
- Summary
- Reference





## Introduction

• Data and Deep learning



"The analogy to deep learning is that the rocket engine is the deep learning models and the **fuel is the huge amounts of data** we can feed to these algorithms." -Andrew Ng-





## Introduction

#### • Data and Deep learning

- Limitation
  - Annotation cost
    - $\begin{array}{l} \Leftrightarrow \text{Labels(classification)}: \text{COCO[1]} \\ \textbf{118K images} \rightarrow \textbf{11.1K hours} \end{array}$
    - Sigma Masks(instance segmentation) : COCO[1]

 $860K\ masks \rightarrow 30.0K\ hours$ 

Captions(image captioning) : nocaps[2]

118K images  $\rightarrow$  6.5K hours

#### - Privacy

서강대한고

SOGANG UNIVERSITY

Sig Medical image, industrial image, etc.

### "Hard to get data"



## "Unsatisfactory data"



- Data limitation
  - Learning strategy

- Semi-supervised, unsupervised, etc.



Labeled data proportion for each learning strategies

#### Data augmentation

- Data mixing, affine transform, etc.



Examples of data mixing





#### • "Small" diversity of data – PoseAug[3] (CVPR 2021, Oral)

#### Motivation

- Annotation of **3D human pose estimation** is implemented using 'motion capture'

 $\therefore$  Hard to get data  $\rightarrow$  Low diversity  $\rightarrow$  Hard to generalize to new datasets

- Offline-manner augmentation has limitation about data diversity

 $\therefore$  Bio-mechanical rules  $\rightarrow$  many pre-defined rules

#### Contribution

- Differentiable(online) augmentor that generates diverse data
- By using discriminator, the augmentor generates realistic data
- 3D pose estimation network became to get better generalization property as well as improve its performance













- "Small" diversity of data PoseAug[3] (CVPR 2021, Oral)
  - Background
    - 1-stage method





- "Small" diversity of data PoseAug[3] (CVPR 2021, Oral)
  - Background
    - KCS(kinematic chain space)
      - SE Transform method between 3D keypoint coordinate and bone vector
        - $\checkmark b_k = p_r p_t = Xc, c = (0, ..., 0, 1, 0, ..., 0, -1, 0, ..., 0)^T$
        - ✓3D pose →  $X \in \mathbb{R}^{3 \times j}$ , bone vectors  $B (\in \mathbb{R}^{3 \times (j-1)}) = (b_1, b_2, ..., b_{j-1})$
      - secomposition of bone vectors **B**

 $\checkmark \widehat{B} (\in \mathbb{R}^{(j-1)\times 3}) : \text{unit vectors of bone vectors} \rightarrow \text{angle information}$  $\checkmark \|B\| (\in \mathbb{R}^{(j-1)\times 1}) : \text{L2 norm of each bone vector} \rightarrow \text{length information}$ 

set Inverse conversion to 3D keypoints coordinates

 $\checkmark X = \Phi^{-1}(B)$ 







- "Small" diversity of data PoseAug[3] (CVPR 2021, Oral)
  - Method
    - Pipeline
      - Signation Formulation







Overview of framework

Seedback loss

$$L_{fb} = |1.0 - \exp[L_{P}(X') - \beta L_{P}(X)]|,$$

where X' represents the augmented data





#### $\leq$ Decomposition of bone vectors **B**

 $\checkmark \widehat{B} (\in \mathbb{R}^{(j-1)\times 3})$ : unit vectors of bone vectors  $\rightarrow$  angle information  $\checkmark ||B|| (\in \mathbb{R}^{(j-1)\times 1})$ : L2 norm of each bone vector  $\rightarrow$  length information

- "Small" diversity of data PoseAug[3] (CVPR 2021, Oral)
  - Method
    - Augmentation



Schugmentation loss

$$\mathcal{L}_{reg}(\boldsymbol{\gamma}) = \begin{cases} 0, & ext{if } \bar{\boldsymbol{\gamma}} < threshold, \\ \| \boldsymbol{\gamma} \|^2, & ext{otherwise,} \end{cases}$$





- "Small" diversity of data PoseAug[3] (CVPR 2021, Oral)
  - Method

SOGANG UNIVERSITY

- Discriminator
  - Aim : To ensure the pose plausibility without sacrificing the diversity
  - ः: Loss : LS-GAN loss

$$\mathcal{L}_{\mathcal{D}} = \mathbb{E}[(D_{3d}(\boldsymbol{X}) - 1)^2] + \mathbb{E}[D_{3d}(\boldsymbol{X}')^2] \\ + \mathbb{E}[(D_{2d}(\boldsymbol{x}) - 1)^2] + \mathbb{E}[D_{2d}(\boldsymbol{x}')^2],$$

sis Part-aware KCS – 3D & 2D

$$\checkmark KCS_{local}^{i} = \widehat{B}_{i}^{T}\widehat{B}_{i}$$

 $\rightarrow$  encapsulate the inter joint angle information

✓Torso, left arm, right arm, left leg, right leg

 $\rightarrow$  5 part





- "Small" diversity of data PoseAug[3] (CVPR 2021, Oral)
  - Results
    - Diversity



#### - Cross dataset scenario



- Performance improvement

|                      | H36M               |                    |                    |                    | 3DHP                |                     |                     |              |
|----------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------|
| Method               | DET                | CPN                | HR                 | GT                 | DET                 | CPN                 | HR                  | GT           |
| SemGCN [52]          | 67.5               | 64.7               | 57.5               | 44.4               | 101.9               | 98.7                | 95.6                | 97.4         |
| + PoseAug            | 65.2 (-2.3)        | <b>60.0</b> (-4.8) | <b>55.0</b> (-2.5) | <b>41.5</b> (-2.8) | <b>89.9</b> (-11.9) | 89.3 (-9.4)         | <b>89.1</b> (-6.5)  | 86.1 (-11.2) |
| SimpleBaseline [26]  | 60.5               | 55.6               | 53.0               | 43.3               | 91.1                | 88.8                | 86.4                | 85.3         |
| + PoseAug            | <b>58.0</b> (-2.5) | 53.4 (-2.2)        | 51.3 (-1.7)        | <b>39.4</b> (-3.9) | <b>78.7</b> (-12.4) | <b>78.7</b> (-10.1) | 76.4 (-10.1)        | 76.2 (-9.1)  |
| ST-GCN [3] (1-frame) | 61.3               | 56.9               | 52.2               | 41.7               | 95.5                | 91.3                | 87.9                | 87.8         |
| + PoseAug            | <b>59.8</b> (-1.5) | 54.5 (-2.4)        | 50.8 (-1.5)        | <b>36.9</b> (-4.8) | 83.5 (-12.1)        | 77.7 (-13.6)        | <b>76.6</b> (-11.3) | 74.9 (-12.9) |
| VPose [33] (1-frame) | 60.0               | 55.2               | 52.7               | 41.8               | 92.6                | 89.8                | 85.6                | 86.6         |
| + PoseAug            | <b>57.8</b> (-2.2) | <b>52.9</b> (-2.3) | <b>50.2</b> (-2.5) | <b>38.2</b> (-3.6) | 78.3 (-14.4)        | 78.4 (-11.4)        | 73.2 (-12.4)        | 73.0 (-13.6) |





- "Small" in some classes: data imbalance while SSL CReST[5] (CVPR 2021)
  - Semi-Supervised Learning(SSL)
    - Utilize unlabeled data to improve model performance
      - Self-training' is used widely in classification task
  - Problem
    - Model trained via SSL performs poorly on class-imbalanced data
      - section of the second section of the section of t
    - Pseudo-labels generated by a biased model trained are problematic
  - Assumption
    - Labeled and unlabeled have same distribution
      - Similarly imbalanced
    - Test-set is a class-balanced dataset



Self-training method





- "Small" in some classes: data imbalance while SSL CReST[5] (CVPR 2021)
  - Motivation

- Performance of the majority class is better? "Partly True"



Recall & Precision for SSL model, class index is sorted by the number of examples in descending order

"The model is **conservative** in classifying samples into minority class, **but** once it makes such a prediction we can be **confident it is correct**."





- "Small" in some classes: data imbalance while SSL CReST[5] (CVPR 2021)
  - Contribution
    - Original training method
      - 1. Train on the labeled set
      - 2. The model's predictions are used to generate pseudo-label set



- Modified training method
  - 1. Train on the labeled <u>& unlabeled</u> set
  - 2. The model's predictions are used to generate pseudo-label set stochastically( $\mu_l$ )









- "Small" in some classes: data imbalance while SSL CReST[5] (CVPR 2021)
  - Contribution
    - Background
      - $i \in y \in \{1, 2, ..., L\}$ : represents class index
      - $\lesssim u$ : unlabeled data sample

p(y): labeled set's class distribution  $\rightarrow$  target distribution

 $\mathfrak{F} \widetilde{p}(y)$ : moving average of the model's prediction on unlabeled examples

p := p(y|u; f): probability that the **unlabeled sample** *u* belongs to *y* 

- Distribution Alignment(DA)

1. 
$$q *= \frac{p(y)}{\tilde{p}(y)}$$

✓ Induce  $\tilde{p}(y)$  to have similar distribution with p(y)

2.  $\tilde{q} = Normalize\left(q * \frac{p(y)}{\tilde{p}(y)}\right)$ ,  $Normalize(x)_i = \frac{x_i}{\sum_j x_j}$ 

Label guess ×

✓ Form a valid probability distribution

Distribution alignment





- Distribution Alignment(DA)

## How to deal with?

- "Small" in some classes: data imbaland
  - Contribution
    - DA with temperature scaling
      - the Use Normalize  $(p(y)^t)$  instead of  $p(y), t \in (0, 1)$
      - $\lesssim$  Strategy to change the value of t

✓Low t makes the distribution smoother and balanced

✓ If t is too low, however, distribution is overly smoothed: wrong pseudo-labeling

✓ Decrease t over generations: Both high precision of the minority class in early generations, and stronger class-rebalancing in late generations







1.  $q := \frac{p(y)}{\tilde{p}(y)}$ 

✓ Induce  $\tilde{p}(y)$  to have similar distribution with p(y)

2.  $\tilde{q} = Normalize\left(q * \frac{p(y)}{\tilde{p}(y)}\right)$ ,  $Normalize(x)_i = \frac{x_i}{\sum_j x_j}$ 



• "Small" in some classes: data imbalance while SSL – CReST[5] (CVPR 2021)

#### • Results

- The effectiveness of the two contribution  $\gamma$ : Imbalance ratio number of the most majority class/number of the most minority class

 $\beta$ : Ratio of labeled data

|                                        | CIFAR10-LT                                                                                    |                                                                                                                                   |                                                                                                                                   |                                                                                               |                                                                                                                                   |                                                                                               | CIFAR100-LT                                                                                   |                                                                                                                                   |                                                                                                                                   |                                                                                               |
|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                        | $\beta = 10\%$                                                                                |                                                                                                                                   |                                                                                                                                   |                                                                                               | $\beta{=}30\%$                                                                                                                    |                                                                                               | $\beta = 10\%$                                                                                |                                                                                                                                   |                                                                                                                                   | 30%                                                                                           |
| Method                                 | $\gamma = 50$                                                                                 | $\gamma{=}100$                                                                                                                    | $\gamma{=}200$                                                                                                                    | $\gamma = 50$                                                                                 | $\gamma{=}100$                                                                                                                    | $\gamma{=}200$                                                                                | $\gamma = 50$                                                                                 | $\gamma{=}100$                                                                                                                    | $\gamma = 50$                                                                                                                     | $\gamma = 100$                                                                                |
| FixMatch [39]<br>w/ CReST<br>w/ CReST+ | $\begin{array}{c} 79.4_{\pm 0.65} \\ 83.8_{\pm 0.45} \\ \textbf{84.2}_{\pm 0.39} \end{array}$ | $\begin{array}{c} 66.3 \scriptstyle{\pm 1.74} \\ 75.9 \scriptstyle{\pm 0.62} \\ \textbf{78.1} \scriptstyle{\pm 0.84} \end{array}$ | $\begin{array}{c} 59.7 \scriptstyle{\pm 0.74} \\ 64.1 \scriptstyle{\pm 0.23} \\ \textbf{67.7} \scriptstyle{\pm 1.39} \end{array}$ | $\begin{array}{c} 81.9_{\pm 0.30} \\ 84.2_{\pm 0.13} \\ \textbf{84.9}_{\pm 0.27} \end{array}$ | $\begin{array}{c} 73.1 \scriptstyle{\pm 0.58} \\ 77.6 \scriptstyle{\pm 0.86} \\ \textbf{79.2} \scriptstyle{\pm 0.20} \end{array}$ | $\begin{array}{c} 64.7_{\pm 0.69} \\ 67.7_{\pm 0.82} \\ \textbf{70.5}_{\pm 0.56} \end{array}$ | $\begin{array}{c} 33.7_{\pm 0.94} \\ 37.4_{\pm 0.29} \\ \textbf{38.8}_{\pm 1.03} \end{array}$ | $\begin{array}{c} 28.3 \scriptstyle{\pm 0.66} \\ 32.1 \scriptstyle{\pm 1.52} \\ \textbf{34.6} \scriptstyle{\pm 0.74} \end{array}$ | $\begin{array}{c} 43.1 \scriptstyle{\pm 0.24} \\ 45.6 \scriptstyle{\pm 0.19} \\ \textbf{46.7} \scriptstyle{\pm 0.34} \end{array}$ | $\begin{array}{c} 38.6_{\pm 0.45} \\ 40.2_{\pm 0.53} \\ \textbf{42.0}_{\pm 0.44} \end{array}$ |

- Per class performance

| Method / Class | Split     | 1    | 2           | 3    | 4    | 5    | 6     | 7     | 8    | 9     | 10    | Avg.  |
|----------------|-----------|------|-------------|------|------|------|-------|-------|------|-------|-------|-------|
| FixMatch [39]  | test      | 98.7 | 99.5        | 90.0 | 83.5 | 85.0 | 47.6  | 69.9  | 59.0 | 8.9   | 7.2   | 64.9  |
| w/ CReST       | test      | 97.7 | 98.3        | 88.8 | 81.9 | 88.2 | 59.7  | 79.5  | 61.2 | 47.0  | 47.9  | 75.0  |
|                |           | -1.0 | -1.2        | -1.2 | -1.6 | +3.2 | +12.1 | +9.6  | +2.2 | +38.1 | +40.7 | +10.1 |
| w/ CReST+      | test      | 93.8 | 97.7        | 87.3 | 76.9 | 87.5 | 69.2  | 84.9  | 67.9 | 60.3  | 70.8  | 79.6  |
|                |           | -4.9 | -1.8        | -2.7 | -6.6 | +2.5 | +21.6 | +15.0 | +8.9 | +51.4 | +63.6 | +14.7 |
| FixMatch [39]  | unlabeled | 98.5 | <b>99.1</b> | 90.0 | 84.0 | 84.7 | 49.7  | 64.9  | 65.6 | 14.9  | 22.2  | 67.4  |
| w/ CReST       | unlabeled | 97.8 | 96.8        | 90.0 | 82.9 | 87.4 | 62.4  | 79.3  | 64.8 | 60.8  | 66.7  | 78.9  |
|                |           | -0.7 | -2.3        | 0    | -1.1 | +2.7 | +12.7 | +14.4 | -0.8 | +45.9 | +44.5 | +11.5 |
| w/ CReST+      | unlabeled | 92.2 | 95.7        | 86.1 | 76.7 | 87.6 | 68.1  | 85.1  | 71.2 | 75.7  | 75.6  | 81.4  |
|                |           | -6.3 | -3.4        | -3.9 | -7.3 | +2.9 | +18.4 | +20.2 | +5.6 | +60.8 | +53.4 | +14.0 |



#### • Just "Small" – Knowledge Evolution(CVPR 2021, Oral)[6]

#### Motivation

- Training on a small dataset is challenging. WHY?
  - Some parameters are redundant and enable overfitting on a small dataset
- Need to do **zero-mapping**(ex: weight decay)
  - $\circledast$  Reduce the complexity of the network



#### "Knowledge Evolution"





#### • Just "Small" – Knowledge Evolution(CVPR 2021, Oral)[6]

#### Method

- 1. Make a binary mask with sparsity ratio  $s_r$
- 2. Initialize the network *N* with random parameters
- 3. Train the network  $N_i$  (*i* th generation)
- 4. Separate the network  $N_i \to H_i^{\Delta}, H_i^{\nabla}$
- 5. Remain  $H_i^{\Delta}$  unchanged; re-initialize  $H_i^{\nabla}$ ;  $i \leftarrow i + 1$



#### How to make a mask?

- 1. <u>WE</u>ight-<u>L</u>evel <u>S</u>plitting (WELS)
  - 1. Similar as weight pruning
  - 2. Advantage : applicable to any computations(CNN, FC, etc.)
  - 3. **Disadvantage** : can't split the fithypothesis( $H^{\Delta}$ ) when inferencing
- 2. <u>KE</u>rnel-<u>L</u>evel <u>S</u>plitting(KELS)
  - 1.  $C_o \times k \times k \times C_i \rightarrow [s_r \times C_o] \times k \times k \times [s_r \times C_i]$
  - 2. Advantage : can split the fithypothesis( $H^{\Delta}$ ) when inferencing
  - 3. **Disadvantage** : applicable to only CNN





- Zero-mapping?

- Just "Small" Knowledge Evolution(CVPR 2021, Oral)[6]
  - Method

| $\begin{array}{c} \text{Conv-1} \\ 0.1 \\ 10^{-2} \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{array} \begin{array}{c} \text{-10}^{-2} \text{Conv-2} \\ 1 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{array} \begin{array}{c} \text{-10}^{-2} \text{Conv-2} \\ 1 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{array}$                  | Cop-1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $\begin{array}{c} \cdot 10^{-2}^{\text{Conv-3}} & \cdot 10^{-2}^{\text{Conv-4}} \\ 2 \\ 1 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 10 \\ 10 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $ | E     |

Absolute values inside  $H^{\Delta}$  and  $H_i^{\nabla}$ 

| $\mathbb{C}$ | Trn                                 | Val                                                                                                                                                  | Tst                                                                                                                                                                                                                            | Total                                                                                                                                                                                                                                                                                                       |
|--------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 102          | 1020                                | 1020                                                                                                                                                 | 6149                                                                                                                                                                                                                           | 8189                                                                                                                                                                                                                                                                                                        |
| 200          | 5994                                | N/A                                                                                                                                                  | 5794                                                                                                                                                                                                                           | 11788                                                                                                                                                                                                                                                                                                       |
| 100          | 3334                                | 3333                                                                                                                                                 | 3333                                                                                                                                                                                                                           | 10000                                                                                                                                                                                                                                                                                                       |
| 67           | 5360                                | N/A                                                                                                                                                  | 1340                                                                                                                                                                                                                           | 6700                                                                                                                                                                                                                                                                                                        |
| 120          | 12000                               | N/A                                                                                                                                                  | 8580                                                                                                                                                                                                                           | 20580                                                                                                                                                                                                                                                                                                       |
|              | C<br>102<br>200<br>100<br>67<br>120 | C         Trn           102         1020           200         5994           100         3334           67         5360           120         12000 | C         Trn         Val           102         1020         1020           200         5994         N/A           100         3334         3333           67         5360         N/A           120         12000         N/A | C         Trn         Val         Tst           102         1020         1020         6149           200         5994         N/A         5794           100         3334         3333         3333           67         5360         N/A         1340           120         12000         N/A         8580 |

Table. Small amounts of data



Evaluation on CUB\_200[7]

50 SOGANG UNIVERSITY

 $5 \cdot$ 



• Just "Small" – Knowledge Evolution(CVPR 2021, Oral)[6]

#### Results

| Flower    | CUB                                                                                                                                                                                             | Aircraft                                                                                                                                                                                                                                                                                                                                             | MIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.76     | 55.49                                                                                                                                                                                           | 51.96                                                                                                                                                                                                                                                                                                                                                | 57.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50.50     | 57.73                                                                                                                                                                                           | 56.34                                                                                                                                                                                                                                                                                                                                                | 60.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 58.78     | 58.96                                                                                                                                                                                           | 61.70                                                                                                                                                                                                                                                                                                                                                | 61.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 45.85     | 59.01                                                                                                                                                                                           | 58.45                                                                                                                                                                                                                                                                                                                                                | 57.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 53.69     | 62.38                                                                                                                                                                                           | 63.18                                                                                                                                                                                                                                                                                                                                                | 59.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 65.88     | 60.57                                                                                                                                                                                           | 65.60                                                                                                                                                                                                                                                                                                                                                | 59.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 49.32     | 66.71                                                                                                                                                                                           | 57.62                                                                                                                                                                                                                                                                                                                                                | 56.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 59.67     | 69.63                                                                                                                                                                                           | 59.43                                                                                                                                                                                                                                                                                                                                                | 57.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 66.34     | 69.35                                                                                                                                                                                           | 59.76                                                                                                                                                                                                                                                                                                                                                | 57.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sed on KE | ELS, <i>s<sub>r</sub></i> =                                                                                                                                                                     | = 0.8                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flower    | CUB                                                                                                                                                                                             | Aircraft                                                                                                                                                                                                                                                                                                                                             | MIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44.88     | 56.32                                                                                                                                                                                           | 51.61                                                                                                                                                                                                                                                                                                                                                | 55.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50.23     | 59.81                                                                                                                                                                                           | 56.25                                                                                                                                                                                                                                                                                                                                                | 60.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 58.03     | 59.38                                                                                                                                                                                           | 60.80                                                                                                                                                                                                                                                                                                                                                | 59.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 45.92     | 58.70                                                                                                                                                                                           | 56.73                                                                                                                                                                                                                                                                                                                                                | 58.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 54.84     | 62.41                                                                                                                                                                                           | 62.68                                                                                                                                                                                                                                                                                                                                                | 60.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 64.69     | 60.36                                                                                                                                                                                           | 65.62                                                                                                                                                                                                                                                                                                                                                | 62.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46.75     | 66.66                                                                                                                                                                                           | 58.87                                                                                                                                                                                                                                                                                                                                                | 56.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 58.27     | 69.67                                                                                                                                                                                           | 60.98                                                                                                                                                                                                                                                                                                                                                | 57.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 64.18     | 71.37                                                                                                                                                                                           | 61.37                                                                                                                                                                                                                                                                                                                                                | 57.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | Flower<br>45.76<br>50.50<br>58.78<br>45.85<br>53.69<br>65.88<br>49.32<br>59.67<br>66.34<br>sed on KE<br>Flower<br>44.88<br>50.23<br>58.03<br>45.92<br>54.84<br>64.69<br>46.75<br>58.27<br>64.18 | Flower         CUB $45.76$ $55.49$ $50.50$ $57.73$ $58.78$ $58.96$ $45.85$ $59.01$ $53.69$ $62.38$ $65.88$ $60.57$ $49.32$ $66.71$ $59.67$ $69.63$ $66.34$ $69.35$ sed on KELS, $s_r$ =           Flower         CUB $44.88$ $56.32$ $50.23$ $59.81$ $58.03$ $59.38$ $45.92$ $58.70$ $54.84$ $62.41$ $64.69$ $60.36$ $46.75$ $66.66$ $58.27$ $69.67$ | Flower         CUB         Aircraft $45.76$ $55.49$ $51.96$ $50.50$ $57.73$ $56.34$ $58.78$ $58.96$ $61.70$ $45.85$ $59.01$ $58.45$ $53.69$ $62.38$ $63.18$ $65.88$ $60.57$ $65.60$ $49.32$ $66.71$ $57.62$ $59.67$ $69.63$ $59.43$ $66.34$ $69.35$ $59.76$ sed on KELS, $s_r = 0.8$ Flower         CUB           Flower         CUB         Aircraft $44.88$ $56.32$ $51.61$ $50.23$ $59.81$ $56.25$ $58.03$ $59.38$ $60.80$ $45.92$ $58.70$ $56.73$ $54.84$ $62.41$ $62.68$ $64.69$ $60.36$ $65.62$ $46.75$ $66.66$ $58.87$ $58.27$ $69.67$ $60.98$ $64.18$ $71.37$ $61.37$ | Flower         CUB         Aircraft         MIT $45.76$ $55.49$ $51.96$ $57.37$ $50.50$ $57.73$ $56.34$ $60.64$ $58.78$ $58.96$ $61.70$ $61.76$ $45.85$ $59.01$ $58.45$ $57.07$ $53.69$ $62.38$ $63.18$ $59.52$ $65.88$ $60.57$ $65.60$ $59.15$ $49.32$ $66.71$ $57.62$ $56.77$ $59.67$ $69.63$ $59.43$ $57.14$ $66.34$ $69.35$ $59.76$ $57.37$ sed on KELS, $s_r = 0.8$ $Flower$ CUB         Aircraft         MIT $44.88$ $56.32$ $51.61$ $55.13$ $50.23$ $59.81$ $56.25$ $60.27$ $58.03$ $59.38$ $60.80$ $59.45$ $45.92$ $58.70$ $56.73$ $58.26$ $54.84$ $62.41$ $62.68$ $60.49$ $64.69$ $60.36$ $65.62$ $62.13$ $46.75$ $66$ |

Based on WELS,  $s_r = 0.7$ 



|                    | $\mathbb{C}$ | Trn   | Val  | Tst  | Total |
|--------------------|--------------|-------|------|------|-------|
| Flower-102 [36]    | 102          | 1020  | 1020 | 6149 | 8189  |
| CUB-200 [52]       | 200          | 5994  | N/A  | 5794 | 11788 |
| Aircraft [33]      | 100          | 3334  | 3333 | 3333 | 10000 |
| MIT67 [41]         | 67           | 5360  | N/A  | 1340 | 6700  |
| Stanford-Dogs [24] | 120          | 12000 | N/A  | 8580 | 20580 |

Table. Small amounts of data

#### CUB on VGG11\_bn

|                               | $s_r$           | $Acc_1$       | Acc10          | ▲acc           | #Ops          | ▲ <sub>ops</sub> | #Param          |  |
|-------------------------------|-----------------|---------------|----------------|----------------|---------------|------------------|-----------------|--|
| $N_g \\ H_g^{\bigtriangleup}$ | 0.5             | 63.47<br>0.52 | 69.65<br>68.84 | 6.1%<br>5.3%   | 15.22<br>3.85 | -<br>74.7%       | 259.16<br>65.20 |  |
|                               | FLW on ResNet18 |               |                |                |               |                  |                 |  |
|                               | $s_r$           | $Acc_1$       | Acc100         | ▲acc           | #Ops          | ▲ops             | #Param          |  |
| $N_g \\ H_g^{\bigtriangleup}$ | 0.8             | 53.87<br>6.41 | 75.62<br>75.62 | 21.7%<br>21.7% | 3.63<br>2.39  | -<br>34.1%       | 22.44<br>14.43  |  |
| $N_g \\ H_g^{\bigtriangleup}$ | 0.5             | 52.62<br>0.37 | 74.60<br>74.60 | 21.9%<br>21.9% | 3.63<br>0.96  | -<br>73.5%       | 22.44<br>5.64   |  |

Based on KELS,  $s_r = 0.8$ 



- Just "Small" Knowledge Evolution(CVPR 2021, Oral)
  - Connection
    - DSD[8]?
      - Special case of 'Knowledge evolution'
        - $\checkmark$ Re-initialize randomly instead of using 0
          - Bad for kernels

 $\checkmark \text{DSD}$  is done for only one generation

| -                         |        | -     |          |       |       |
|---------------------------|--------|-------|----------|-------|-------|
| Method                    | Flower | CUB   | Aircraft | MIT   | Dog   |
| CE + AdaCos               | 49.96  | 62.20 | 56.15    | 50.89 | 65.33 |
| CE + RePr                 | 39.75  | 47.01 | 36.04    | 49.77 | 55.63 |
| CE + DSD                  | 48.85  | 56.11 | 53.66    | 58.31 | 65.76 |
| $CE + BANs-N_{10}$        | 44.92  | 57.30 | 52.56    | 57.66 | 65.49 |
| $CE(N_1)$                 | 45.85  | 55.16 | 51.73    | 56.62 | 64.82 |
| $CE + KE - N_3$ (ours)    | 52.44  | 57.75 | 56.70    | 59.67 | 67.06 |
| $CE + KE - N_{10}$ (ours) | 60.15  | 58.01 | 59.73    | 58.71 | 67.75 |
|                           |        |       |          |       |       |

Table. Based on WELS.







# Summary

- About small amounts of data
  - Lack of diversity
    - Differentiable augmentor
  - Data imbalance while semi-supervised learning
    - Data re-balancing
  - Overfitting when training on a small dataset
    - Zero-mapping
    - Iterative learning





## Reference

[1]Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence Zitnick, "Microsoft COCO: Common objects in context," in ECCV, 2014.

[2]Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh,

Stefan Lee, and Peter Anderson, "nocaps: novel object captioning at scale," in Proceedings of the IEEE International Conference on Computer Vision, pp. 8948–8957, 2019

[3]Gong, Kehong, Jianfeng Zhang, and Jiashi Feng. "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[4] Shichao Li, Lei Ke, Kevin Pratama, Yu-Wing Tai, Chi-Keung Tang, and Kwang-Ting Cheng. Cascaded deep monocular 3d human pose estimation with evolutionary training data. In

CVPR, 2020.

[5]Wei, Chen, et al. "Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[6]https://arxiv.org/abs/2103.05152

[7]Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011

[8] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks. arXiv preprint arXiv:1607.04381, 2016.



