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* What to Expect From This Seminar

« HDR in 2020
« HDR Problem Formulation

» Camera Response Function Estimation
« CRF-net: Single Image Radiometric Calibration using CNNs
- Linearization-Net

- Analyzing Modern Camera Response Functions

 Saturated Region Restoration

- Single Image HDR Reconstruction Using a CNN w/ Masked Features and Perceptual Loss



What to Expect From This Seminar
* Broad (but shallow) understanding of the HDR problem

* Major CV conference topics in HDR

= Special camera
- Lens, sensor

« Common camera

- Single image HDR reconstruction

* Two major problems in single image HDR reconstruction using deep learning

- Camera response function estimation

- Saturated region restoration
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HDR in 2020

: Overview
* Deep optics (lens)

- Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging
[CVPR 2020]

- Deep optics for single-shot high-dynamic-range imaging [CVPR 2020]
* Special camera (sensor)

- UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging
[NIPS 2020]

= Neuromorphic Camera Guided High Dynamic Range Imaging [CVPR 2020]
* Single image HDR
- Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline [CVPR
2020]

- Single Image HDR Reconstruction Using a CNN with Masked Features and Perceptual
Loss [SIGGRAPH, TOG 2020]

- End-to-End Differentiable Learning to HDR Image Synthesis for Multi-exposure Images
[AAAI 2021]
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HDR in 2020

: (1) Deep optics (lens)
* Diffractive Optics Element (DOE)

physical layer digital layer

- Optical encoder — electronical decoder

{Optical encoder |

- Additional special lens in front of normal camera

= Electronical decoder \

- Tailerd neural network
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HDR in 2020

: (1) Deep optics (lens)

» Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range
Imaging [CVPR 2020]

= Learning an optical HDR encoding in a single image
- Optical encoder : DOE maps saturated highlights into neighboring unsaturated areas

- Electronical decoder : reconstruction network tailored to images from a DOE
- Propose a novel rank-1 parameterization of the DOE

- Drastically reduces the optical search space

- Efficiently encode high-frequency detail
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HDR in 2020

: (2) Special HW (sensor)

* UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range
Imaging [NIPS 2020]

= Reconstruction network tailored to images from a modulo camera

Normal camera output  Modulo camera output  Reconstruction output
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HDR in 2020

: (3) Single image HDR

 Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline
[CVPR 2020]

* End-to-End Differentiable Learning to HDR Image Synthesis for Multi-exposure
Images [AAAI 2021]

 Single Image HDR Reconstruction Using a CNN with Masked Features and
Perceptual Loss [SIGGRAPH, TOG 2020]
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HDR in 2020
: (3) Single image HDR

hmnages [AAAL 2021
%ingle Image HDR Reconstruction Using a CNN with Masked Features and
Perceptual Loss [SIGGRAPH, TOG 2020]
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HDR in 2020

HDR Problem Formulation

Camera Response Function Estimation

Saturated Region Restoration
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HDR Problem Formulation
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HDR Problem Formulation

: Classical HDR reconstruction

ISP pipeline
A
. A
Light . .
Radiometric
l Saturati Tone mapping c _ calibration/linearlization
aturation ompression
Scene A P A
l . / A\ r A\
Sensor | Linear CRF .| Non-linear .| Non-linear .| Linear
| Image | Image | Image | Image
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HDR Problem Formulation

: Inverse tone mapping

ISP pipeline
A
r A
Light ) )
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HDR Problem Formulation

: Inverse tone mapping, deep learning methods
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HDR Problem Formulation

: Inverse tone mapping, deep learning methods

4 : A sheds
LDR MY NonlinearLDR ™™ Linear LDR A HDR
Quantization Non-linear Dynamic range

(32 bit = 8 bit) mapping clipping ‘

!

1. Camera Response 2. Saturated Region
Function Estimation Restoration
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Camera Response Function Estimation
: Overview ” o /

 What
!

- Input brightness — output brightness curve

= Sensor irradiance — pixel intensity curve
Cosine irradiance collector Radiance collector

= Light energy incident on image sensors — output Of @ CAMEra | s uomsmson wosressawe s sy ssame o
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Agfacolor HDC 100 plus Green
Agfacolor Ultra 050 plus Green
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Kodak Max Zoom 800 Green
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Kodak KAF2001 CCD
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Camera Response Function Estimation

: Overview
 Why
- Computer vision algorithms require image irradiance
- Low level vision tasks
;'s De-blurring
- Handling intensities from different exposure settings
:': Image enhancement : HDR imaging
;' 3D reconstruction : photometric stereo, shape from shading

Pixel pairs with the same normal
but different albedos

Intermediate results with
unified exponential ambiguity

=

292

Ymm:
. a

Pixel ratios and rank minimization 3 Csorvaion

§
i

‘Cessranon

Inverse radiometric
response functions

Internet photo collection Selected highest-quality image and patch extraction

1D search for resolving the ambiguity
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HDR Problem Formulation

Camera Response Function Estimation

Camera Response Function Estimation

: Overview

 Models
« Gamma curves
- 1 parameter

- Polynomials

= Generalized gamma curves

- Higher-order

- Empirical model of response (EMoR)

@

gamma s
correction

Saturated Region Restoration

- Data-driven model (from database of real-world camera response functions; DoRF)
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Camera Response Function Estimation

: Overview

* Assumptions

= Spatially uniform irradiance distribution in a scene — CRF — deviation
- CRF as a function best restores the assumptions

 How
- w/ known reflectance patches (Macbeth chart)

- w/o known reflectance patches (= Automatic CRF estimation)

- Methods (by inputs)
;' Multiple same-scene images
v'Exposure ratio among images — relationship between irradiance images
:'+ Single channel image
v'Gamma curve
- Insufficient for real-world CRF
:': Single RGB image
v'Linearly blended edges

21
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CRF-net

: Single Image Radiometric Calibration using CNNs

* Problem statement

- Single RGB image CRF estimation

- Formulated as 11 EMoR model parameter estimation

* Main contribution

- Conditioned sampling
- (1) Random patch sample — patch-wise CRF estimation
- (2) Select on condition
;' # (R+G+B) pixel value histogram bin > 220
- (3) Aggregate predicted CRFs for whole image
:': Outlier removal & average
- Pre-training

- CRF classification

22
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CRF-net

: Single Image Radiometric Calibration using CNNs

* Proposed method

= Overview
Training GT
. 11 parameters
Well-exposed, linear RAW photos P
J I L2
Tonemapped by CRFs in DoRF
¢ 227 x 227 »| ResNet-18 Pred.
patch 11 parameters
1 image — (227 x 227) random patch x 10
Output Size Configuration Short-cut
114 % 114 [7x7><64],stride2
57 x 57 max pool 3 x 3, stride 2
Pre-training 1x1x 64
57 x 57 3% 3 %64 [x1 [11x 256]
CRF classification Bakltin
(201 likelihoods instead of 11) 57 x 57 3x3 %61 [x2 identity
1x1x256
1x1x128
29 % 29 3% 3% 128|x1 [131x512]
1x1x512
1x1x128
29 x 29 3x3x128|x1 identity
1x1x512
23x 23 average pool 7 x 7, stride 1
11 fully connected
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CRF-net

: Single Image Radiometric Calibration using CNNs

« Assumptions
= Input
- Well-exposed, correctly white balanced
- Ignore over/underexposed pixels
- CRF
- EMoR CRF model
;' Weights of 11 PCA components

- Same CRF for each color channel

Ground Truth ___
Estimated g S

Pixel Intensity

- CREF is the only source of non-linear transformation

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Irradiance Relative Irradiance

- Sampled image patches are enough
Figure 2: Examples of suboptimal radiometric calibration.
The left image exhibits many oversaturated pixels, whereas
. . . the right exhibits a very high contrast. In both cases, it is dif-
° leltatIOIIS ficult to find go.od windows that suﬁic.iently'(and'uniform!y)
cover the full pixel range. The respective estimation (and lin-
earization (x1072)) errors are: 2.365 (3.037) and 3.925 (7.485).

= Doesn’t works well in outlier cases

- Oversaturated

- High contrast
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Linearization-Net

: from ‘~ Learning to Reverse the Camera Pipeline’

* Problem statement

- Single RGB image CRF estimation

- Formulated as 11 EMoR model parameter estimation

* Main contribution

= An extension of CRF-net
- CRF-net + {input features + constraint}
- Additional Priors
- Inspirations
:': from classical computer vision papers
- Input features
;' Edge information, histogram

- Constraint term

25
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Linearization-Net

: from ‘~ Learning to Reverse the Camera Pipeline’

* Proposed method

= Overview
Edge information, intensity histogram

:7 I ResNet-18
i \

Sobel filter responses

(6-D) o Global

» —>  average

pooling

-~

| Soft histogram maps (84-D)

Fully-

layers

Saturated Region Restoration

—> connected —*

K-D PCA weights

E
|

Monotonicaly EMoR model
] <~  increasing " [Grossberg and
constraint Rievar coug)
Linear LDR Recovered inverse CRF g Approximated inverse CRF g
‘/ Linear image ‘ Inverse CRF
reconstruction loss Ly, | .~ loss Leyg
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Linearization-Net

: from ‘~ Learning to Reverse the Camera Pipeline’
» Limitations

» Doesn’t works so well

- Baseline method vs. Linearization-Net vs. E2E Differentiable Learning to HDR

Reference inverse CRF using

the Debevec and Malik method Estimated inverse CRF using the SingleHDR Reference inverse CRF using the proposed method
1 1 1
[}
=3 [} [}
T = 3
; 0.8 g 08 g 08
o (] (]
c o Qo
(] S g
E 06 E 06 g 06
= 2 =]
E 04 E 04 E 04
g £ £
8 o o e
0 0.2 0.4 06 08 1 0 02 04 06 08 1 [ 02 0.4 06 08 1
Normalized pixel intensity value Normalized pixel intensity value Normalized pixel intensity value
o 0.0354 o :0.0707 g :0.0208
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Analyzing Modern CRFs

: is CRF estimation necessary?

* Main contribution
- A new dataset of 178 CRFs from modern digital cameras (DCRF dataset)
- From camera review color chart images available online
= CRF estimation method for/from the proposed dataset
= Answer question about modern CRFs
- Which mathematical models are best for CRF estimation?

- How have CRFs changed over time?

- And how unique are CRFs from camera to camera?

0 02 04 06 0s 1
Irradiance
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HDR in 2020

HDR Problem Formulation

Camera Response Function Estimation

Saturated Region Restoration

Analyzing Modern CRFs

: is CRF estimation necessary?

* Proposed method

Input Image

Internet camera
review images

(" Gray Chart ) ( Interpolated ) o Noise Distribution ) Result CRF
Sample Points Inverse CRF CRF Estimation
CRF: Canonf OSSOMarkSl : CanonPOSSDMarkEl invCRY. LTHEES g 10" CamemEOSSOMarkiS var
' ! o’
. $ ' b mu..'ll._‘_i | hlL . o? o
: . 4 inl : é, 4 ;a &
5 0 hL.L !_-‘.i_; LA g: "E.:Af:b ;::.3:&, i;,
o ] K atd
* . ] LR} s .
S o Jv L’ ¥ c‘“'-’"u o )‘ k“‘h“ ‘l‘_‘ ey s : e °
Initial Coarse Noise distribution Refining using
sparse CRF estimation interpolation measure noise distribution
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HDR in 2020

HDR Problem Formulation

Camera Response Function Estimation

Analyzing Modern CRFs

: is CRF estimation necessary?

 Which mathematical models are best for CRF estimation?

Saturated Region Restoration

Avg. RMSE over different datasets

Data Gamma | Poly-5 Poly-11 | GGCM | EMoR-5 | EMoDCRF-3 | EMoR-25 | EMoDCRF-25

DCRF 0.056394 | 0.005150 | 0.001860 | 0.026221 | 0.003119 0.002362 0.000608 0.000008

invDCRF | 0.057726 | 0.002796 | 0.001908 | 0.006732 | 0.002485 0.002870 0.000320 0.000065

DoRF 0.061654 | 0.006353 | 0.001981 | 0.008556 | 0.002328 0.018937 0.000114 0.003128

invDoRF | 0.054723 | 0.005829 | 0.001655 | 0.023942 | 0.001790 0.016689 0.000154 0.000641

L[S 5[19] 11[15] 2 [¥7] 5[20] 3 25 [5] 25 # parameters

(" DCRF ATl DoRF )

' ¥ L _A[r- ! =\

) o B = e VI :

i i L. i.
, s.‘,‘. _ e 7
| P - —
' \' s 3 O T | 3 - YEEET) )
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Analyzing Modern CRFs

: is CRF estimation necessary?
e [imitation
= Purpose
- CRF estimation as a measure of camera characteristics

;' Originally white color — arbitrary pixel value

- CRF estimation as a preprocessing for HDR image reconstruction
(— linearlization — HDR image reconstruction)

;' Originally arbitrary color (but too much) — arbitrary pixel value .. Fitting Errors

= Proposed CRF estimation method w rrocson s
oo EMoR on InvDCRF
- Dataset overfitted method e Y

0.015 —+— DCRFpes on DCRF

:': Can be justified if their dataset better represents ideal distribution

001\

:': But do they? (online images)

- Experiments o

- Insufficient comparison with baseline models ol e

Kumber of Eigonvacions

;' # parameters : S vs. 5, 11 vs. 11
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Camera Response Function Estimation

: Conclusion

» Accurate CRF is required for better inverse tone mapping
= As a preprocessing for HDR reconstruction pipeline

= Can be considered as a domain generalization problem

» CRFs are camera dependent characteristics
= There’s no single gamma parameter fits all

» Calls for accurate CRF estimation method

* Modern digital cameras may exhibit similar CRFs (than film cameras)

- But not exactly the same

* Deep learning-based CRF estimation methods have been proposed

- But not extensively explored
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Problem statement

= Recovering the missing information in the saturated highlights

 Main contribution

- Network
- Feature masking & mask update

s’ Same filters can be used to compute the contribution of the valid pixels in the features
- Training
- Inpainting pre-training
= Input
- Patch sampling

34
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Masked Features and Perceptual Loss

: Focus on saturated region restoration
* Proposed method

U-Net like

Pre-training

Random masked
MIT Places [2014]

Leaky RelLU
RelLU
k- k- —i.
k-dimensional activation k x k conv layer k x k conv layer concatenation
downsample by 2 upsample by 2

Loss = L1 (log scale + masked)

+ VGG + style
1 image — (512 x 512) random patch x 250
Algorithm 1 Patch Sampling ~ ~
1 pruc:durePA'rcHMEmc(ikI. M) H = M @ Ty + (1 - M) O [GXP(Y) - 1]
2 H: HDR image, M: Mas|
3 ae = 100.0 ¢ = Bilateral filter color sigma Pred H = fanI HDR
4 g = 10.0 = Bilateral filter space sigma
5 I = RgbToGray(H) P # M = Mask [0,1]
B biatealitert, o, 0 + Bess Layee T =input LDR [0,1]
» D-L-B » Detail Layer I = gamma for linearlization (2.0)
= GrmpelGmdX) Pred Y = network output (in log)

0 Gy = getGradY(D)
1 G=abs(Gy) + abs(Gy)
12 return mean(G @ (1 - M))
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Proposed method

= Overview
k-dimensional activation kx k conv layer k x k conv layer concatenation
downsample by 2 upsample by 2
Linear Saturated
| . < Network
mage exp( ) / region

Output ¥

Non-linear
Image

Well-
exposed

[0,1]

Mask M

Linear / y=20

Image

LDRT

LDRTY

H=MoTY +(1-M) o [exp(Y) - 1]

Pred H = final HDR

M = Mask [0,1]

T =input LDR [0,1]

I = gamma for linearlization = 2.0
Pred Y = network output (in log scale)
® = Element-wise multiplication
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Proposed method

- Feature masking & mask update

- Soft mask [0,1]
:': Features from weakly saturated regions are not discarded

- Feature masking : reduce magnitude of the features generated from the saturated content
;' Element-wise multiplication of feature map & mask

- Mask update : update contribution of valid mask with same conv. layer

;' Also convolve mask with conv. layer weights

= = =
@ o o
= > CcC Fm-—————— > c
-] ° °
(=% [=N (=%
o o o
T T T
) ) 4 . Input Mask Layer 1 Layer 2 Layer 3
Weights Weights Weights Channel 3 Channel 1 Channel 4
e ) | T N
A 211
g g g S 4 |
2 |Features 2 |Features 2 | Features g G!r
o O | o == - - =} & ﬂ # !
= 1= =3 < = !
=} S 5] - b= 1
i i ) o, !
B Layer 4 Layer 5 Layer 9
lnpitimage Channel 12 Channel 9 Channel 7

Input image
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Proposed method
- Inpainting pre-training Pre-training
Random masked
- Limited dataset MIT Places [2014]

Image inpainting for irregular holes using partial convolutions [ECCV 2018]
Learning deep features for scene recognition using places database [NIPS 2014]

;= Prior methods
v'Pre-train : simulated HDR (from standard images) Fine-tuning
v'Fine-tune : real HDR
« Didn’t worked!
:': Proposed method

v'Pre-train : inpainting dataset

- Learn to create plausible textures

. Binary mask 1 image — (512 x 512) random patch x 250

v'Fine-tune : HDR dataset Algorithm 1 Paich Sampling
1. procedure ParcHMETRIC(H, M)
. 2 H: HDR image, M: Mask
» Adapt to HDR domain Lo Bt e s e
5 I; Rgb:l'uGray(H) ? ¢
. & L =log(I + 1)
- ... and adapt to saturated region P B0 s L
K G;:‘.E;el(‘yr:ld)([})] roe e
- Smooth & textureless P P S

12 return mean(G @ (1 = M))
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Proposed method

- Patch sampling

- Problem statement

:': How to effectively learn textures of saturated region
v'Learn from patches with textures and saturated region
;' How to detect & measure textured patches
- Proposed method
;' HDR 1mage decomposition — base layer + detail layers
v“Fast bilateral filtering for the display of high-dynamic-range images”, Siggraph 2002
« On how to diplay HDR images on displays with limited dynamic range
- How to reduce the contrast while preserving detail
- Two-scale decomposition of the image
- Base layer : encoding large-scale variations — reduce contrast
- Detail layer : preserve details
;= Saturated area classification

v’ Avg. of the gradients (Sobel operator) of the detail layer > threshold (0.85) — textured
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

e Limitations & conclusion

= Overexposed/satrated region restoration is hard
- Detailed areas often fail

- Often input lacks any information at all

» Color distortion

- Blend nearby colors

:'+ Gray buliding + blue sky = blue (building + sky)

Eilertsen Marnerides

- Temporally unstable

- Not applicable for HDR videos

Input Ours
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What to Expect From This Seminar
* Broad (but shallow) understanding of the HDR problem

* Major CV conference topics in HDR

= Special camera
- Lens, sensor

« Common camera

- Single image HDR reconstruction

* Two major problems in single image HDR reconstruction using deep learning

- Camera response function estimation

- Saturated region restoration
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ISP pipeline

: in signal processing, optics (practical)

Auto Exposure
Auto Focus Auto White Balance
Statistic Statistic

Raw dati> Opticalﬁ\ White :l/'\ Bad Pixel ﬁ'\ Color

Black —/| Balance Correction [—/| Interpolation

Color Space

Gamma Color
Conversion Correction Correction

YUV Space :> Compression
Processing

43
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White Balance: Matching Human Perception

* To simulate human eyes white balance: adjusting
colors so that the image looks more natural

256

* Adjustable channel gain for each color channel

192

* General approaches
* Gray world assumption

N
/

64

» Perfect reflector assumption

04

* Calibration based approaches o m w m

» What if data are nonlinear? l

) /
256 256 192

T — 7
Sy i/

0 64 128 192 256
o 0

0 B4 128 192 256 0 64 128 192 256
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-
Tone Mapping

* Map tone curve to get better image

* Similar to histogram adjustment or Photoshop S
curve function ﬂ | .

* For Y channel only
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HDR problem formulation

: Inverse tone mapping, deep learning methods

ISP pipeline
A
4 A
Light ) )
Radiometric
l Saturat Tone mapping c _ calibration/linearlization
aturation ompression
Scene A press A
| / N s )\
Sensor CRF .| NoR-linear .| Non-linear N Linear
Ifhage | Image | Image
LDR l
Computer
2. Hallucination 1. CRF estimation vision
algorithms
Inverse tone mappin
A
4 A
Non-linear | 77 Non-linear

Image | Image
HDR LDR
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Proposed method

- Feature masking

- Soft mask
:': Features from weakly saturated regions are not discarded
- Feature masking : reduce magnitude of the features generated from the saturated content
:': Element-wise multiplication of feature map & mask [0,1]
Z;=X; 0 M, X, € REXWXC  pp e [0, 1]HXWXC
- Mask update : update contribution of valid mask with same conv. layer

;' Also convolve mask with conv. layer weights

A Replicated
M. - = w M Wil e REXWXC  lwill; € RIXIXC ~ Replicate
I+1 (||V\/l||1+e 1 Wl Wil tofitHx W x C
B
ﬂeigms Eeights B E&ights
g Features Q Features g Features
£ s TTTTTT Maal- g

Input image
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Masked Features and Perceptual Loss

: Focus on saturated region restoration

* Proposed method

» Loss
-L1 loss Ly=|0-M)o({ - log(H + 1))]|4
-VGGloss Ly = le||¢l(7'(ﬁ))—¢l(T(H))||1 H=MoH+(1-MoY JT(H) = %

-Styleloss Ly = ) [GUT ) = GUT (I G0 = 41074100
l

T

CixCy T (HWp) x C

Normalization factor
CiHwW,
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