Single Image HDR Reconstruction

Vision & Display Systems Lab. Sogang University

Outline

- What to Expect From This Seminar
- HDR in 2020
- HDR Problem Formulation
- Camera Response Function Estimation
 - CRF-net: Single Image Radiometric Calibration using CNNs
 - Linearization-Net
 - Analyzing Modern Camera Response Functions
- Saturated Region Restoration
 - Single Image HDR Reconstruction Using a CNN w/ Masked Features and Perceptual Loss

What to Expect From This Seminar

- Broad (but shallow) understanding of the HDR problem
- Major CV conference topics in HDR
 - Special camera
 - Lens, sensor
 - Common camera
 - Single image HDR reconstruction
- Two major problems in single image HDR reconstruction using deep learning
 - Camera response function estimation
 - Saturated region restoration

- : Overview
- Deep optics (lens)
 - Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging
 [CVPR 2020]
 - Deep optics for single-shot high-dynamic-range imaging [CVPR 2020]
- Special camera (sensor)
 - UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging [NIPS 2020]
 - Neuromorphic Camera Guided High Dynamic Range Imaging [CVPR 2020]
- Single image HDR
 - Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline [CVPR 2020]
 - Single Image HDR Reconstruction Using a CNN with Masked Features and Perceptual Loss [SIGGRAPH, TOG 2020]
 - End-to-End Differentiable Learning to HDR Image Synthesis for Multi-exposure Images [AAAI 2021]

- : (1) Deep optics (lens)
- Diffractive Optics Element (DOE)
 - Pipeline
 - Optical encoder \rightarrow electronical decoder
 - Optical encoder
 - Additional special lens in front of normal camera
 - Electronical decoder
 - Tailerd neural network
 - Case study
 - Image Classification in Low Light
 - Monocular Depth Estimation
 - Neural Sensors
 - ...
 - HDR Imaging

: (1) Deep optics (lens)

- Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging [CVPR 2020]
 - Learning an optical HDR encoding in a single image
 - Optical encoder : DOE maps saturated highlights into neighboring unsaturated areas
 - Electronical decoder : reconstruction network tailored to images from a DOE
 - Propose a novel rank-1 parameterization of the DOE
 - Drastically reduces the optical search space
 - Efficiently encode high-frequency detail

: (2) Special HW (sensor)

- UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging [NIPS 2020]
 - Reconstruction network tailored to images from a modulo camera

Normal camera output Modulo camera output Reconstruction output

: (3) Single image HDR

- Single-Image HDR Reconstruction by Learning to **Reverse the Camera Pipeline** [CVPR 2020]
- End-to-End Differentiable Learning to HDR Image Synthesis for Multi-exposure Images [AAAI 2021]
- Single Image HDR Reconstruction Using a CNN with **Masked Features** and Perceptual Loss [SIGGRAPH, TOG 2020]

: (3) Single image HDR

- Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline
 [CVPR 2020]
- End-to-End Differentiable Learning to HDR Image Synthesis for Multi-exposure Images [AAAI 2021]
- Single Image HDR Reconstruction Using a CNN with Masked Features and Perceptual Loss [SIGGRAPH, TOG 2020]

: Classical HDR reconstruction

: Inverse tone mapping

: Inverse tone mapping, deep learning methods

: Inverse tone mapping, deep learning methods

: Overview

- What
 - Input brightness \rightarrow output brightness curve
 - Sensor irradiance \rightarrow pixel intensity curve
 - Light energy incident on image sensors \rightarrow output of a camera

: Overview

- Why
 - Computer vision algorithms require image irradiance
 - Low level vision tasks
 - Si: De-blurring
 - Handling intensities from different exposure settings
 - Si Image enhancement : HDR imaging
 - :3D reconstruction : photometric stereo, shape from shading
 - : Hmage authentication : a natural watermark

- : Overview
- Models
 - Gamma curves
 - 1 parameter
 - Polynomials
 - Generalized gamma curves
 - Higher-order
 - Empirical model of response (EMoR)

- Data-driven model (from database of real-world camera response functions; DoRF)

- : Overview
- Assumptions
 - Spatially uniform irradiance distribution in a scene \rightarrow CRF \rightarrow deviation
 - CRF as a function best restores the assumptions
- How
 - w/ known reflectance patches (Macbeth chart)
 - w/o known reflectance patches (= Automatic CRF estimation)
 - Methods (by inputs)
 - Standard Multiple same-scene images
 - \checkmark Exposure ratio among images \rightarrow relationship between irradiance images
 - se Single channel image
 - ✓Gamma curve
 - Insufficient for real-world CRF
 - Single RGB image
 - ✓Linearly blended edges

CRF-net

- : Single Image Radiometric Calibration using CNNs
- Problem statement
 - Single RGB image CRF estimation
 - Formulated as 11 EMoR model parameter estimation
- Main contribution
 - Conditioned sampling
 - (1) Random patch sample \rightarrow patch-wise CRF estimation
 - (2) Select on condition

 $\approx \# (R+G+B)$ pixel value histogram bin > 220

- (3) Aggregate predicted CRFs for whole image
 - : Outlier removal & average
- Pre-training
 - CRF classification

CRF-net

: Single Image Radiometric Calibration using CNNs

- Proposed method
 - Overview

Pre-training

CRF classification (201 likelihoods instead of 11)

Output Size	Configuration	Short-cut
114×114	$7 \times 7 \times 64$, stride 2	
57×57	max pool 3×3 , stride 2	
57 × 57	$\begin{bmatrix} 1 \times 1 \times 64 \\ 3 \times 3 \times 64 \\ 1 \times 1 \times 256 \end{bmatrix} \times 1$	$\left[1 \times 1 \times 256\right]$
57 × 57	$\begin{bmatrix} 1 \times 1 \times 64 \\ 3 \times 3 \times 64 \\ 1 \times 1 \times 256 \end{bmatrix} \times 2$	identity
29 × 29	$\begin{bmatrix} 1 \times 1 \times 128 \\ 3 \times 3 \times 128 \\ 1 \times 1 \times 512 \end{bmatrix} \times 1$	$\left[1 \times 1 \times 512\right]$
29 × 29	$\begin{bmatrix} 1 \times 1 \times 128 \\ 3 \times 3 \times 128 \\ 1 \times 1 \times 512 \end{bmatrix} \times 1$	identity
23×23	average pool 7 \times 7, stride 1	
11	fully connected	

CRF-net

: Single Image Radiometric Calibration using CNNs

- Assumptions
 - Input
 - Well-exposed, correctly white balanced
 - Ignore over/underexposed pixels
 - CRF
 - EMoR CRF model
 - Steele Weights of 11 PCA components
 - Same CRF for each color channel
 - CRF is the only source of non-linear transformation
 - Sampled image patches are enough
- Limitations
 - Doesn't works well in outlier cases
 - Oversaturated
 - High contrast

Figure 2: Examples of suboptimal radiometric calibration. The left image exhibits many oversaturated pixels, whereas the right exhibits a very high contrast. In both cases, it is difficult to find good windows that sufficiently (and uniformly) cover the full pixel range. The respective estimation (and linearization ($\times 10^{-2}$)) errors are: 2.365 (3.037) and 3.925 (7.485).

Linearization-Net

- : from '~ Learning to Reverse the Camera Pipeline'
- Problem statement
 - Single RGB image CRF estimation

- Formulated as 11 EMoR model parameter estimation

- Main contribution
 - An extension of CRF-net
 - CRF-net + {input features + constraint}
 - Additional Priors
 - Inspirations
 - from classical computer vision papers
 - Input features
 - :Edge information, histogram
 - Constraint term

Linearization-Net

: from '~ Learning to Reverse the Camera Pipeline'

- Proposed method
 - Overview

Edge information, intensity histogram

Linearization-Net

: from '~ Learning to Reverse the Camera Pipeline'

- Limitations
 - Doesn't works so well

- Baseline method vs. Linearization-Net vs. E2E Differentiable Learning to HDR

- : is CRF estimation necessary?
- Main contribution
 - A new dataset of 178 CRFs from modern digital cameras (DCRF dataset)

- From camera review color chart images available online

- CRF estimation method for/from the proposed dataset
- Answer question about modern CRFs
 - Which mathematical models are best for CRF estimation?
 - How have CRFs changed over time?
 - And how unique are CRFs from camera to camera?

: is CRF estimation necessary?

• Proposed method

: is CRF estimation necessary?

• Which mathematical models are best for CRF estimation? Avg. RMSE over

Avg. RMSE over different datasets

Data	Gamma	Poly-5	Poly-11	GGCM	EMoR-5	EMoDCRF-3	EMoR-25	EMoDCRF-25	
DCRF	0.056394	0.005150	0.001860	0.026221	0.003119	0.002362	0.000608	0.000008	
invDCRF	0.057726	0.002796	0.001908	0.006732	0.002485	0.002870	0.000320	0.000065	
DoRF	0.061654	0.006353	0.001981	0.008556	0.002328	0.018937	0.000114	0.003128	
invDoRF	0.054723	0.005829	0.001655	0.023942	0.001790	0.016689	0.000154	0.000641	
	1 [13]	5 [19]	11 [15]	2 [17]	5 [20]	3	25 [5]	25	# parameters

- : is CRF estimation necessary?
- Limitation
 - Purpose

- CRF estimation as a measure of camera characteristics

 \lesssim Originally white color \rightarrow arbitrary pixel value

- CRF estimation as a preprocessing for HDR image reconstruction
 - $(\rightarrow$ linearlization \rightarrow HDR image reconstruction)

 \Leftrightarrow Originally arbitrary color (but too much) \rightarrow arbitrary pixel value

- Proposed CRF estimation method
 - Dataset overfitted method

Can be justified if their dataset better represents ideal distribution

State But do they? (online images)

- Experiments
 - Insufficient comparison with baseline models

;;; # parameters : 5 vs. 5, 11 vs. 11

: Conclusion

- Accurate CRF is required for better inverse tone mapping
 - As a preprocessing for HDR reconstruction pipeline
 - Can be considered as a domain generalization problem
- CRFs are camera dependent characteristics
 - There's no single gamma parameter fits all
 - Calls for accurate CRF estimation method
- Modern digital cameras *may* exhibit similar CRFs (than film cameras)
 - But not exactly the same
- Deep learning-based CRF estimation methods have been proposed
 - But not extensively explored

Saturated Region Restoration

Masked Features and Perceptual Loss

- : Focus on saturated region restoration
- Problem statement
 - Recovering the missing information in the saturated highlights
- Main contribution
 - Network
 - Feature masking & mask update

Same filters can be used to compute the contribution of the valid pixels in the features

- Training
 - Inpainting pre-training
- Input
 - Patch sampling

Masked Features and Perceptual Loss

: Focus on saturated region restoration

• Proposed method

Masked Features and Perceptual Loss

- : Focus on saturated region restoration
- Proposed method
 - Feature masking & mask update
 - Soft mask [0,1]
 - SF Features from weakly saturated regions are not discarded
 - Feature masking : reduce magnitude of the features generated from the saturated content
 - Element-wise multiplication of feature map & mask
 - Mask update : update contribution of valid mask with same conv. layer
 - Also convolve mask with conv. layer weights

- : Focus on saturated region restoration
- Proposed method
 - Inpainting pre-training
 - Limited dataset
 - Stephen Prior methods
 - ✓ Pre-train : simulated HDR (from standard images)
 - ✓ Fine-tune : real HDR
 - Didn't worked!
 - Stepposed method
 - ✓ Pre-train : inpainting dataset
 - Learn to create plausible **textures**
 - Binary mask
 - ✓Fine-tune : HDR dataset
 - Adapt to HDR domain
 - ... and adapt to saturated region
 - Smooth & textureless

Pre-training

Random masked MIT Places [2014]

Image inpainting for irregular holes using partial convolutions [ECCV 2018] Learning deep features for scene recognition using places database [NIPS 2014]

Fine-tuning

1 image \rightarrow (512 x 512) random patch x 250

Algorithm 1 Patch Sampling		
1:	procedure PATCHMETRIC(H, M)	
2:	H: HDR image, M: Mask	
3:	$\sigma_{c} = 100.0$	▶ Bilateral filter color sigma
4:	$\sigma_{s} = 10.0$	▶ Bilateral filter space sigma
5:	I = RgbToGray(H)	
6:	$L = \log(I + 1)$	
7:	B = bilateralFilter(L, σ_c , σ_s)	▶ Base Laye
8:	D = L - B	▷ Detail Laye
9:	$G_X = getGradX(D)$	
10:	$G_{y} = \text{getGradY}(D)$	
11:	$G = abs(G_x) + abs(G_y)$	
12:	return mean($G \odot (1 - M)$)	

- : Focus on saturated region restoration
- Proposed method
 - Patch sampling
 - Problem statement

- How to effectively learn textures of saturated region
 - ✓Learn from patches with textures and saturated region
- How to detect & measure textured patches
- Proposed method
 - \Rightarrow HDR image decomposition \rightarrow base layer + **detail layers**
 - ✓"Fast bilateral filtering for the display of high-dynamic-range images", *Siggraph 2002*
 - On how to diplay HDR images on displays with limited dynamic range
 - How to reduce the contrast while preserving detail
 - Two-scale decomposition of the image
 - Base layer : encoding large-scale variations \rightarrow reduce contrast
 - Detail layer : preserve details
 - Saturated area classification

 \checkmark Avg. of the gradients (Sobel operator) of the detail layer > threshold (0.85) \rightarrow textured

- : Focus on saturated region restoration
- Limitations & conclusion
 - Overexposed/satrated region restoration is hard
 - Detailed areas often fail
 - Often input lacks any information at all
 - Color distortion
 - Blend nearby colors

Sterrer Gray buliding + blue sky = blue (building + sky)

- Temporally unstable
 - Not applicable for HDR videos

Input

Ours

What to Expect From This Seminar

- Broad (but shallow) understanding of the HDR problem
- Major CV conference topics in HDR
 - Special camera
 - Lens, sensor
 - Common camera
 - Single image HDR reconstruction
- Two major problems in single image HDR reconstruction using deep learning
 - Camera response function estimation
 - Saturated region restoration

Supplementary

ISP pipeline : in signal processing, optics (practical) Auto Exposure Auto Focus Auto White Balance Statistic Statistic Optical **Bad Pixel** White Color **Raw data** Interpolation Black Balance Correction RGB data Color Color Space Gamma Conversion Correction Correction YUV data Edge YUV Space Compression Processing Enhancement

White Balance: Matching Human Perception

- To simulate human eyes white balance: adjusting colors so that the image looks more natural_
- Adjustable channel gain for each color channel
- General approaches

256

192

128

64

- Gray world assumption
- Perfect reflector assumption
- Calibration based approaches
- What if data are nonlinear?

Tone Mapping

- Map tone curve to get better image
- Similar to histogram adjustment or Photoshop's curve function
- For Y channel only

HDR problem formulation

: Inverse tone mapping, deep learning methods

- : Focus on saturated region restoration
- Proposed method
 - Feature masking
 - Soft mask
 - SF Features from weakly saturated regions are not discarded
 - Feature masking : reduce magnitude of the features generated from the saturated content
 - Element-wise multiplication of feature map & mask [0,1]

$$Z_l = X_l \odot M_l \qquad \qquad X_l \in \mathbb{R}^{H \times W \times C} \qquad M_l \in [0, 1]^{H \times \bar{W} \times C}$$

- Mask update : update contribution of valid mask with same conv. layer

Also convolve mask with conv. layer weights

$$M_{l+1} = \left(\frac{|W_l|}{\|W_l\|_1 + \epsilon}\right) * M_l \qquad |W_l| \in \mathbb{R}^{H \times W \times C} \quad \|W_l\|_1 \in \mathbb{R}^{1 \times 1 \times C} \quad \underset{\text{to fit } H \times W \times C}{\text{Replicated}}$$

: Focus on saturated region restoration

• Proposed method

• Loss

- L1 loss $L_r = \|(1 - M) \odot (\hat{Y} - \log(H + 1))\|_1$

$$-\operatorname{VGG} \operatorname{loss} \qquad L_{\upsilon} = \sum_{l} \|\phi_{l}(\mathcal{T}(\tilde{H})) - \phi_{l}(\mathcal{T}(H))\|_{1} \qquad \tilde{H} = M \odot H + (1 - M) \odot \hat{Y} \qquad \mathcal{T}(H) = \frac{\log(1 + \mu H)}{\log(1 + \mu)}$$

$$-\operatorname{Style \ loss} \qquad L_{s} = \sum_{l} \|G_{l}(\mathcal{T}(\tilde{H})) - G_{l}(\mathcal{T}(H))\|_{1} \qquad \begin{array}{c} G_{l}(X) = \frac{1}{K_{l}}\phi_{l}(X)^{T}\phi_{l}(X) \\ \uparrow \\ C_{l} \times C_{l} \qquad \uparrow \\ (H_{l}W_{l}) \times C_{l} \end{array}$$
Normalization factor

 $C_l H_l W_l$

48