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Introduction

* Recovering a HDR image from a single LDR input image
« This paper propose a method to reverse the LDR image formation pipeline.

- [HDR] = dynamic range clipping = non-linear mapping with a CRF
—> quantization = [LDR]

- [LDR] = dequantization = linearization = hallucination - [HDR]

Input LDR images

Our results
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Background

* Dynamic range
= The ratio of the maximum and minimum values of contrast
- The ratio of brightness between the brightest and darkest areas
* LDR (Low dynamic range) : Small dynamic range
« HDR (High dynamic range) : Large dynamic range

- Compared to the LDR image, the details in the dark and bright areas are alive, which has
the advantage of adding realism to the screen.

LDR HDR
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Background

* Multi-image HDR reconstruction

= Better performance than single-image

- Since images with various exposure values are input, there is a lot of information given, so
resilience is relatively high in terms of detail and color.

- Ghost artifacts present

- Ghost artifacts

;' Afterimages that occur when the camera or object moves in the process of sequentially
shooting multiple images

— HDR = 1 2
[ reconstruction ] A\
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Single HDR image

'.S‘ Multi fusi :L';:r. Rira L
| |::>{ ulti-exposure fusion ]Mb

Single LDR image
Multi-exposure LDR images

Multi-image HDR reconstruction pipeline
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Background

* Multi-image HDR reconstruction

- Ghost artifacts present

- When such an afterimage effect occurs, an afterimage problem and a discoloration problem
appear on the HDR restored image, resulting in deterioration of image quality.

- Therefore, a lot of research is being conducted to solve this problem.
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Examples of ghost artifacts
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Background

* Single-image HDR reconstruction

- It can be implemented without images with various exposure values

- It does not suffer from ghosting artifacts

- More challenging compared to multi-image

- Less information is given, resulting in poor resilience in terms of detail and color
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Learning to Reverse the Camera Pipeline

* HDR to LDR image formation pipeline

» [HDR] = dynamic range clipping = non-linear mapping with a CRF = quantization - [LDR]
* Inverse function of the HDR to LDR image formation pipeline

« [LDR] - dequantization = linearization = hallucination - [HDR]
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Learning to Reverse the Camera Pipeline
* HDR to LDR image formation pipeline

- Dynamic range clipping
- The camera first clips the pixel values of an HDR image to a limited range.

- Due to the clipping operation, there is information loss for pixels in the over-exposed regions.
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Learning to Reverse the Camera Pipeline
* HDR to LDR image formation pipeline

- Non-linear mapping from a camera response function (CRF)
- Non-linear mapping of linear LDR image generated by applying dynamic range clipping
- A function that maps the irradiance of sensor to the pixel intensity of the image
:': Cameras apply nonlinear CRF mapping to adjust the contrast of the captured image.
v'Calibration, tone mapping
;' A CRF is unique to the camera model.

v'Non-linear characteristics are obtained through internal processing steps such as
gamma correction and automatic white balance.

- CRF estimation is a basic and necessary step in generating high dynamic range images.
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Learning to Reverse the Camera Pipeline
* HDR to LDR image formation pipeline

- Quantization

- After the non-linear mapping, the pixel values are quantized to 8 bits by
Q(1l,) = [255 x I, + 0.5] /255.

- The quantization process leads to errors in the under-exposed regions.

- LDR image is formed by:
L=®(H)=Q(F(C(H)))

- @ denotes the pipeline of dynamic range clipping, non-linear mapping, and quantization steps..
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Learning to Reverse the Camera Pipeline

* Dequantization-Net

- 6-level U-Net architecture with 2 conv layers followed by a leaky ReLU (a = 0.1)

- Tanh layer 1s used to normalized the output of the last layer to [-1.0, 1.0]. ,
- The output of the Dequantization-Net is added to the input LDR image.

- Dequantized LDR image is generated.

ﬁdeq = ”fdeq - In”é

« [.2 loss

_fx (x>0)
f(x)*{ux (x<0)

Leaky ReLU

- Ground truth HDR image is constructed by dynamic range clipping and non-linear mapping.
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Learning to Reverse the Camera Pipeline

* Linearization-Net
- The goal is to predict CRF and convert non-linear LDR images to linear irradiance.

- CRF is unique for each camera, but all CRFs have the following properties.
- The function should increase monotonically.
- The minimum and maximum input values must be mapped to the minimum and maximum

output values, respectively.
- Since it is a one-to-one mapping function, the inverse function also has the above features.
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Learning to Reverse the Camera Pipeline

e Linearization-Net

- Edge and color histogram are effective in predicting inverse CRF

- Extract edge and color histogram features from non-linear LDR images

:'= Sobel filter

:': Spatial-aware soft-histogram layer

» ResNet-18

-2 FC layer = k-dim PCA weights
- Empirical Model of Response (EMoR) model applied

Sobel filter responses |
(6-D)
< average
I'i pooling

Non-linear LDR

|
Soft histogram maps (84-D)

| Monotonicaly
Il ‘ increasing
U constraint
Linear LDR Recovered inverse CRF g
Linear image Inverse CRF
reconstruction loss Ly, loss Ly

Fully-

- connected

layers

K-D PCA weights

EMoR model
[Girossberg and
Nayar 2004

Approximated inverse CRF g
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Learning to Reverse the Camera Pipeline

» Hallucination

- The goal is to recover missing details due to dynamic range clipping.
- Over-exposed regions

- Encoder-decoder architecture with skip connections

- Reconstruction HDR image

I;T == fﬁn + o - C_l(f"n)
Over-exposed mask @ = max(0, [y, —7)/(1—7)  (7=1095)

Perceptual loss
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Learning to Reverse the Camera Pipeline

» Combination of loss functions
AdeqLdeq + Min Liin + Acer Lerr + Anal Lhat + Ap Lp + Ay Loy
(Meq= 1, Min= 10, Aerr= 1, Ana= 1, Xp=0.001, Aw=0.1)
» Refinement
- Same U-Net architecture as the Dequantization-Net

- Refine the output of the Hallucination-Net
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Learning to Reverse the Camera Pipeline

» Experimental Results

= Quantitative comparison
- HDR-VDP-2 score

- Proposed method has the highest performance.

Method | Training dataset | HDR-SYNTH HDR-REAL RAISE[10] HDR-EYE [42]
HDRCNN+ [14] HDR-SYNTH + HDR-REAL | 55.51 £6.64 51.38 £7.17 56.51 +4.33 51.08 £ 5.84
DrTMO+ [15] HDR-SYNTH + HDR-REAL | 56.41 +7.20 50.77 £ 7.78 57.92+3.69 51.26 + 5.94
ExpandNet [40] Pre-trained model of [40] 53.55 +4.98 48.67+6.46 5H54.62+1.99 50.43+£ 5.49
Deep chain HDRI [29] Pre-trained model of [29] - - - 49.80 £+ 5.97
Deep recursive HDRI [30] | Pre-trained model of [30] - - - 48.85 + 4.91
Ours* HDR-SYNTH 60.11 £6.10 51.59+7.42 58.80+3.91 52.66+ 5.64
Ours+ HDR-SYNTH + HDR-REAL | 59.52 +6.02 53.16 +£7.19 59.21 +3.68 53.16 4+ 5.92
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Learning to Reverse the Camera Pipeline

» Experimental Results

= Quantitative comparison

Method |  PSNR (1) SSIM (1)

w/o dequantization 33.86 +£6.96  0.9946 + 0.0109
Hou et al. [18] 33.79+6.72  0.9936 £+ 0.0110
Liu et al. [35] 34.83 £ 6.04  0.9954 £ 0.0073

Dequantization-Net (Ours) | 35.87 £6.11  0.9955 &+ 0.0070

Comparisons on Dequantization-Net

) , Monotonicall L2 error () PSNR (1)
Image  Edge  Histogram increasing ’ of inverse CRF  of linear image
v - 2.00 £ 3.15 3343 £7.03
v v 1.66 + 2.93 34.31 £6.94
v - v - 1.61 £ 3.03 34.51 £ 7.14
v v v - 1.58 +2.73 34.53 £ 6.83
v v v v 1.56 £ 2.52 34.64 £ 6.73

Analysis on alternatives of Linearization-Net

Positive residual Resize convolution Perceptual loss | HDR-VDP-2 (1)

- - 63.60 £ 15.32

v - - 64.79 + 15.89
v ' - 64.52 + 16.05
v v v 66.31 + 15.82

Analysis on alternatives of Hallucination-Net
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Learning to Reverse the Camera Pipeline

» Experimental Results

- Visual comparison

) Input LDR (b) HDRCNN+ (¢) DIrTMO+ (d) Expe mch.l (¢) Ours+
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Conclusion

* Recovering a HDR image from a single LDR input image

 This paper propose a method to reverse the LDR image formation pipeline.

- [HDR] = dynamic range clipping = non-linear mapping with a CRF
—> quantization = [LDR]

- [LDR] = dequantization = linearization = hallucination - [HDR]

» Experimental results validate the effectiveness of proposed method to restore visually
pleasing details for a wide variety of challenging scenes.

‘ -
R SEHha 20 vr
@ SOGANG UNIVERSITY LAB



