Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

박 예 인

Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

Outline

- Introduction
- Background
 - Dynamic range / LDR / HDR
 - Multi-image HDR reconstruction
 - Single-image HDR reconstruction
- Learning to Reverse the Camera Pipeline
 - LDR image formation
 - Dequantization
 - Linearization
 - Hallucination
 - Refinement
 - Experimental Results
- Conclusion

Introduction

- Recovering a HDR image from a single LDR input image
- This paper propose a method to reverse the LDR image formation pipeline.
 - [HDR] → dynamic range clipping → non-linear mapping with a CRF
 → quantization → [LDR]
 - [LDR] \rightarrow dequantization \rightarrow linearization \rightarrow hallucination \rightarrow [HDR]

- Dynamic range
 - The ratio of the maximum and minimum values of contrast

- The ratio of brightness between the brightest and darkest areas

- LDR (Low dynamic range) : Small dynamic range
- HDR (High dynamic range) : Large dynamic range
 - Compared to the LDR image, the details in the dark and bright areas are alive, which has the advantage of adding realism to the screen.

• Multi-image HDR reconstruction

- Better performance than single-image
 - Since images with various exposure values are input, there is a lot of information given, so resilience is relatively high in terms of detail and color.
- Ghost artifacts present
 - Ghost artifacts
 - Stafterimages that occur when the camera or object moves in the process of sequentially shooting multiple images

• Multi-image HDR reconstruction

Ghost artifacts present

- When such an afterimage effect occurs, an afterimage problem and a discoloration problem appear on the HDR restored image, resulting in deterioration of image quality.
- Therefore, a lot of research is being conducted to solve this problem.

Examples of ghost artifacts

- Single-image HDR reconstruction
 - It can be implemented without images with various exposure values
 - It does not suffer from ghosting artifacts
 - More challenging compared to multi-image

- Less information is given, resulting in poor resilience in terms of detail and color

• HDR to LDR image formation pipeline

SOGANG UNIVERSITY

- [HDR] \rightarrow dynamic range clipping \rightarrow non-linear mapping with a CRF \rightarrow quantization \rightarrow [LDR]
- Inverse function of the HDR to LDR image formation pipeline
 - [LDR] \rightarrow dequantization \rightarrow linearization \rightarrow hallucination \rightarrow [HDR]

• HDR to LDR image formation pipeline

Dynamic range clipping

- The camera first clips the pixel values of an HDR image to a limited range.

- Due to the clipping operation, there is information loss for pixels in the over-exposed regions.

HDR to LDR image formation pipeline

• HDR to LDR image formation pipeline

- Non-linear mapping from a camera response function (CRF)
 - Non-linear mapping of linear LDR image generated by applying dynamic range clipping
 - A function that maps the irradiance of sensor to the pixel intensity of the image
 - Scameras apply nonlinear CRF mapping to adjust the contrast of the captured image.

✓ Calibration, tone mapping

- \lesssim A CRF is unique to the camera model.
 - ✓Non-linear characteristics are obtained through internal processing steps such as gamma correction and automatic white balance.
- CRF estimation is a basic and necessary step in generating high dynamic range images.

HDR to LDR image formation pipeline

• HDR to LDR image formation pipeline

Quantization

- After the non-linear mapping, the pixel values are quantized to 8 bits by

$$\mathcal{Q}(I_n) = \lfloor 255 \times I_n + 0.5 \rfloor / 255.$$

- The quantization process leads to errors in the under-exposed regions.

- LDR image is formed by:

 $L = \Phi(H) = \mathcal{Q}(\mathcal{F}(\mathcal{C}(H)))$

– Φ denotes the pipeline of dynamic range clipping, non-linear mapping, and quantization steps..

HDR to LDR image formation pipeline

- Dequantization-Net
 - 6-level U-Net architecture with 2 conv layers followed by a leaky ReLU ($\alpha = 0.1$)
 - Tanh layer is used to normalized the output of the last layer to [-1.0, 1.0].
 - The output of the Dequantization-Net is added to the input LDR image.
 - Dequantized LDR image is generated.
 - L2 loss

$$\mathcal{L}_{\text{deq}} = \|\hat{I}_{\text{deq}} - I_n\|_2^2$$

Leaky ReLU

- Ground truth HDR image is constructed by dynamic range clipping and non-linear mapping.

- Linearization-Net
 - The goal is to predict CRF and convert non-linear LDR images to linear irradiance.
 - CRF is unique for each camera, but all CRFs have the following properties.
 - The function should increase monotonically.
 - The minimum and maximum input values must be mapped to the minimum and maximum output values, respectively.
 - Since it is a one-to-one mapping function, the inverse function also has the above features.

- Linearization-Net
 - Edge and color histogram are effective in predicting inverse CRF
 - Extract edge and color histogram features from non-linear LDR images
 - Sobel filter
 - ::: Spatial-aware soft-histogram layer
 - ResNet-18
 - 2 FC layer \rightarrow k-dim PCA weights
 - Empirical Model of Response (EMoR) model applied

$$h(i,j,c,b) = \begin{cases} 1-d\cdot B\,, & \text{if } d < \frac{1}{B} \\ 0\,, & \text{otherwise} \end{cases}$$

i, j : horizontal, vertical pixel positions c : the index of color channels $b \in \{1, \dots, B\}$: the index for the histogram bin d = |I(i, j, c) - (2b-1)/(2B)| : the intensity distance to the center of the bth bin

- Hallucination
 - The goal is to recover missing details due to dynamic range clipping.
 - Over-exposed regions
 - Encoder-decoder architecture with skip connections
 - Reconstruction HDR image

$$\hat{H} = \hat{I}_{\rm lin} + \alpha \cdot C^{-1}(\hat{I}_{\rm lin})$$

Over-exposed mask $\alpha = \max(0, \hat{I}_{\rm lin} - \gamma)/(1 - \gamma)$ ($\gamma = 0.95$)

• Combination of loss functions

$$\lambda_{deq} \mathcal{L}_{deq} + \lambda_{lin} \mathcal{L}_{lin} + \lambda_{crf} \mathcal{L}_{crf} + \lambda_{hal} \mathcal{L}_{hal} + \lambda_p \mathcal{L}_p + \lambda_{tv} \mathcal{L}_{tv}$$

($\lambda_{deq} = 1, \lambda_{lin} = 10, \lambda_{crf} = 1, \lambda_{hal} = 1, \lambda_p = 0.001, \lambda_{tv} = 0.1$)

- Refinement
 - Same U-Net architecture as the Dequantization-Net
 - Refine the output of the Hallucination-Net

• Experimental Results

- Quantitative comparison
 - HDR-VDP-2 score
 - Proposed method has the highest performance.

Method	Training dataset	HDR-Synth	HDR-REAL	RAISE [10]	HDR-EYE [42]
HDRCNN+ [14]	HDR-SYNTH + HDR-REAL	55.51 ± 6.64	51.38 ± 7.17	56.51 ± 4.33	51.08 ± 5.84
DrTMO+ [15]	HDR-SYNTH + HDR-REAL	56.41 ± 7.20	50.77 ± 7.78	57.92 ± 3.69	51.26 ± 5.94
ExpandNet [40]	Pre-trained model of [40]	53.55 ± 4.98	48.67 ± 6.46	54.62 ± 1.99	50.43 ± 5.49
Deep chain HDRI [29]	Pre-trained model of [29]	-	-	-	49.80 ± 5.97
Deep recursive HDRI [30]	Pre-trained model of [30]	-	-	-	48.85 ± 4.91
Ours*	HDR-SYNTH	60.11 ± 6.10	51.59 ± 7.42	58.80 ± 3.91	52.66 ± 5.64
Ours+	HDR-SYNTH + HDR-REAL	59.52 ± 6.02	53.16 ± 7.19	59.21 ± 3.68	53.16 ± 5.92

• Experimental Results

Quantitative comparison

Method	PSNR (†)	SSIM (†)
w/o dequantization	33.86 ± 6.96	0.9946 ± 0.0109
Hou et al. [18]	33.79 ± 6.72	0.9936 ± 0.0110
Liu et al. [35]	34.83 ± 6.04	0.9954 ± 0.0073
Dequantization-Net (Ours)	35.87 ± 6.11	0.9955 ± 0.0070

Comparisons on Dequantization-Net

Image	Edge	Histogram	Monotonically increasing	L2 error (↓) of inverse CRF	PSNR (†) of linear image
\checkmark	-	-	-	2.00 ± 3.15	33.43 ± 7.03
\checkmark	\checkmark	-	-	1.66 ± 2.93	34.31 ± 6.94
\checkmark	-	\checkmark	-	1.61 ± 3.03	34.51 ± 7.14
\checkmark	\checkmark	\checkmark	-	1.58 ± 2.73	34.53 ± 6.83
\checkmark	\checkmark	\checkmark	\checkmark	1.56 ± 2.52	34.64 ± 6.73

Analysis on alternatives of Linearization-Net

Positive residual	Resize convolution	Perceptual loss	HDR-VDP-2 (†)
-	-	-	63.60 ± 15.32
\checkmark	-	-	64.79 ± 15.89
\checkmark	\checkmark	-	64.52 ± 16.05
\checkmark	\checkmark	\checkmark	66.31 ± 15.82

Analysis on alternatives of Hallucination-Net

• Experimental Results

Visual comparison

Conclusion

- Recovering a HDR image from a single LDR input image
- This paper propose a method to reverse the LDR image formation pipeline.
 - [HDR] → dynamic range clipping → non-linear mapping with a CRF
 → quantization → [LDR]
 - [LDR] \rightarrow dequantization \rightarrow linearization \rightarrow hallucination \rightarrow [HDR]
- Experimental results validate the effectiveness of proposed method to restore visually pleasing details for a wide variety of challenging scenes.

