Controlling GAN via PCA of latent vectors

김 현성

Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

Outline

• Introduction

- GAN: good at image synthesis
- GAN: controllable?
- Background
 - StyleGAN[1]
 - BigGAN[2]
 - PCA of latent vectors
- GAN and PCA
 - Results and findings
- Conclusion

Introduction

• GAN: good at image synthesis

Basic GAN structure

Input Output

Output Input

horse → zebra

zebra → horse

CycleGAN[3]

BigGAN[2]

LR image

4x HR image

SRGAN[4]

Introduction

- GAN: controllable?
 - Supervised learning of latent direction[5]
 - Shorten the distance between the generated image after taking " α -step" in the latent direction $G(z + \alpha w)$ and the target edit(G(z), α)

 ${\lesssim}$ New loss for G

$$\mathcal{L}_{edit} = L2\left(G(z + \alpha w) - \text{edit}(G(z), \alpha)\right)$$

se Loss for D

$$\mathcal{L}_{GAN} = \max_{D} \left(\mathbb{E}_{z,\alpha} [D(G(z + \alpha w))] - \mathbb{E}_{x,\alpha} [D(\operatorname{edit}(x, \alpha))] \right) \quad \text{Need additional}$$
object detector

Introduction

- GAN: controllable?
 - Unsupervised identification of interpretable directions

• StyleGAN[1]

Network

Experimental results

Not-curated set of images in 1024² resolution

- StyleGAN[1]
 - Mapping Network

 $w \in W$ (Intermediate latent space, 512 dim.)

- StyleGAN[1]
 - Adaptive Instance Normalization

StyleGAN

- StyleGAN[1]
 - Style Mixing

- BigGAN[2]
 - Feed-Forward Network

• Experimental results

• BigGAN[2]

Ch.

Batch

- Batch-size & Number of channels
- Shared class embedding
- Skip-z connection
- Orthogonal regularization

• BigGAN[2]

- Orthogonal regularization
- Model Res. FID/IS (min FID) / IS FID / (valid IS) FID / (max IS) **SN-GAN** 128 27.62/36.80N/A N/A N/A N/A SA-GAN 128 18.65/52.52N/A N/A $25 \pm 2/206 \pm 2$ **BigGAN** 128 $8.7 \pm .6/98.8 \pm 3$ $7.7 \pm .2/126.5 \pm 0$ $9.6 \pm .4/166.3 \pm 1$ **BigGAN** 256 $8.7 \pm .1/142.3 \pm 2$ $7.7 \pm .1/178.0 \pm 5$ $9.3 \pm .3/233.1 \pm 1$ $25 \pm 5/291 \pm 4$ **BigGAN** 512 8.1/144.2 27.0/275 7.6/170.311.8/241.4BigGAN-deep 128 $5.7 \pm .3/124.5 \pm 2$ $6.3 \pm .3/148.1 \pm 4$ $7.4 \pm .6/166.5 \pm 1$ $25 \pm 2/253 \pm 11$ 256 BigGAN-deep $6.9 \pm .2/171.4 \pm 2$ $7.0 \pm .1/202.6 \pm 2$ $8.1 \pm .1/232.5 \pm 2$ $27 \pm 8/317 \pm 6$ 512 **BigGAN-deep** 7.5/152.87.7/181.4 11.5/241.539.7/298
- Truncation trick

Score on ImageNet

Resample components of z whose magnitudes are out of range [-threshold , threshold]

- BigGAN[2]
 - Other experiments...
 - Parameter initialization

 $i \in N(0, 1), u(-1, 1), Bernoulli \{0, 1\}, \max(N(0, 1), 0), \dots$

- Instability: Generator
 - Sig Importance of top-three singular values of each matrix
 - :: How to counteract spectral explosion
 - St Which value is good for clamping the first singular value
- Instability: Discriminator
 - \lesssim Why the loss of D jumps when training collapse
 - $\lesssim D$ is memorizing the training set?

• StyleGAN[1] & BigGAN[2]

Inference

- BigGAN

$$f_i y_i = G_i(y_{i-1}, \mathbf{z}) \quad M: 8 - MLP$$

- StyleGAN

 $f_i = G_i(y_{i-1}, w)$ with w = M(z)

- Able to mix styles?
 - StyleGAN

si: yes

- BigGAN

서강대한고

SOGANG UNIVERSITY

\$;; **no**

• PCA of latent vectors

• StyleGAN[1]

– Goal is to identify the principal axes of $p(\boldsymbol{w})$

 \leq Since the distribution of z is not learned, which distribution of z is isotropic

- How to do?
 - ste Sample N random vectors $\mathbf{z}_{1:N}$
 - \therefore Compute $w_i = M(z_i)$
 - \therefore Compute PCA of these $w_{1:N}$ values
 - :;; Get matrix V: basis matrix
- Edit w

 $\lim w' = w + Vx$

 \checkmark x is composed of constants to control the value of w on new axes, and set by user \Leftrightarrow Assume only one w is used for image generation

- PCA of latent vectors
 - BigGAN[2]

- Perform PCA at an intermediate network layer *i*

S: The output of 1st layer is used, as the performance was better than using any other output tensor

- How to do?

- ste Sample N random vectors $\mathbf{z}_{1:N}$
- $f_i \in \text{Compute } \boldsymbol{y}_j = \boldsymbol{G}_i(\boldsymbol{z}_j)$

: Compute PCA of these $y_{1:N}$ values

 \checkmark Get low-rank basis matrix V, data mean μ

: Get PCA coordinates x_j of each feature tensor: $x_j = V^T(y_j - \mu)$

 $\lim_{k \to \infty} u_k = \operatorname{argmin} \sum_j ||u_k x_j^k - z_j||^2$, where x_j^k is the k th value of x_j

– Edit **z**

z = z + Ux

 $\checkmark x$ is composed of constants to control the value of $\ z$ on new axes, and set by user

- <u>**Results</u>** and findings</u>
 - Find specific principal axes & layers
 - $E(v_j, start end)$: edit latent vector using j th principal axis from 'start' layer to 'end' layer

BigGAN

• <u>*Results*</u> and findings

거강대학교

SOGANG UNIVERSITY

• Edit *w*, *z* using principal axes $\pm 2\sigma$ v_0 v_1 v_2 v_{17} v_{18} *v*₁₉

BigGAN

18

• Results and *findings*

SOGANG UNIVERSITY

- How many dimensions are important to image synthesis?
 - Investigation of variance captured in each dimension of the PCA for the FFHQ StyleGAN model
 - EFirst 100 dimensions capture 85% of the variance; first 200 dimensions capture 92.5%

• Results and *findings*

<u> 서강대학교</u>

SOGANG UNIVERSITY

• Where are the *ws*?

- Investigation of distribution of w: p(w)By investigating of $p(x^0, x^1, ..., x^{511})$

- Results and *findings*
 - Undesirable properties inherited from GAN's training set
 - Entanglement

- Results and *findings*
 - Undesirable properties inherited from GAN's training set
 - Disallowed combination

Masculinity / Feminity

Conclusion

• GAN control using PCA

- We can control contents of images generated by GAN whose layers share same input like **z**, **w** in BigGAN, StyleGAN.
- Even, for StyleGAN, we can get **w** w/o computing 8-MLP when we do inference.

• Limitations

- Heavily depending on GAN's training dataset.
- Need to find every direction & layers for specific control.

Reference

- 1. T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks. In Proc. CVPR, 2019.
- 2. A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image synthesis. In Proc. ICLR, 2019.
- 3. J. Zhu, T. Park, P. Isola, A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017
- C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunnungham, A. Acosta, A. Aitken, A. Tejani, J., Totz, Z. Wang, W. Shi. Pthoto-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- 5. A. Jahanian, L. Chai, and P. Isola. On the "steerability" of generative adversarial networks. In Proc. ICLR, 2020.
- 6. Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic style. In ICLR, 2017.

