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Introduction
• GAN: good at image synthesis

3

CycleGAN[3]

BigGAN[2] SRGAN[4]Basic GAN structure 



Introduction
• GAN: controllable?

▪ Supervised learning of latent direction[5]

− Shorten the distance between the generated image after taking “α–step” in the latent direction 

G(z + αw) and the target edit(G(z), α) 

҉ New loss for G

҉ Loss for D
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Need additional 
object detector



Introduction
• GAN: controllable?

▪ Unsupervised identification of interpretable directions
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Background
• StyleGAN[1]

▪ Network
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▪ Experimental results  

Not-curated set of images in 10242 resolution



Background
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• StyleGAN[1]

▪ Mapping Network

StyleGANTraditional

𝒛 ∈ Z 

(latent code, 512 dim.)

𝒘 ∈ W

(Intermediate latent 

space, 512 dim.)

Non-linear

Mapping



Background
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• StyleGAN[1]

▪ Adaptive Instance Normalization

StyleGAN

(Intermediate latent 

space, 512 dim.)

FC-Layer 𝒄𝒐𝒏𝒄𝒂𝒕(𝒚𝒔, 𝒚𝒃)

(scale & bias 

parameter, 2*C dim.)

✓ 𝑨𝒅𝒂𝑰𝑵 𝒙𝑖 , 𝒚 = 𝒚𝑠,𝑖
𝒙𝑖 − 𝜇(𝒙𝑖)

𝜎(𝒙𝒊)
+ 𝒚𝑏,𝑖

✓ 𝒘 ∈ 𝑾

Normalize first using 
momentums taken 
across spatial axes



Background
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• StyleGAN[1]

▪ Style Mixing

𝑧1~𝑝 𝑧 → 𝑤1

𝑧2~𝑝 𝑧 → 𝑤2



Background
• BigGAN[2]

▪ Feed-Forward Network

10

▪ Experimental results  



Background
• BigGAN[2]

▪ Batch-size & Number of channels

▪ Shared class embedding

▪ Skip-z connection

▪ Orthogonal regularization
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Linear 

mapping

“Skip-Z”

From [6]



Background
• BigGAN[2]

▪ Orthogonal regularization

− Truncation trick

҉ Resample components of z whose magnitudes are out of range [-threshold , threshold]
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Background
• BigGAN[2]

▪ Other experiments…

− Parameter initialization

҉ N(0, 1), u(-1, 1), Bernoulli{0, 1}, max(N(0, 1), 0), …

− Instability: Generator

҉ Importance of top-three singular values of each matrix

҉ How to counteract spectral explosion

҉ Which value is good for clamping the first singular value

− Instability: Discriminator

҉ Why the loss of D jumps when training collapse

҉ D is memorizing the training set?
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Background
• StyleGAN[1] & BigGAN[2]

▪ Inference

− BigGAN

҉ 𝑦𝑖 = 𝐺𝑖 𝑦𝑖−1, 𝒛

− StyleGAN

҉ 𝑦𝑖 = 𝐺𝑖 𝑦𝑖−1, 𝒘 with w = M(z)

▪ Able to mix styles?

− StyleGAN

҉ yes

− BigGAN

҉ no
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𝒛: 𝑛𝑜𝑖𝑠𝑒 𝑣𝑒𝑐𝑡𝑜𝑟
𝐺𝑖 ∶ 𝑖 th layer of G

𝑀 ∶ 8 − 𝑀𝐿𝑃

𝑦𝑖 ∶ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓𝐺𝑖

StyleGAN BigGAN



Background
• PCA of latent vectors

▪ StyleGAN[1]

− Goal is to identify the principal axes of p(w)

҉ Since the distribution of z is not learned, which distribution of z is isotropic

− How to do?

҉ Sample N  random vectors 𝒛1:𝑁

҉ Compute 𝒘𝑖 = M(𝒛𝑖)

҉ Compute PCA of these 𝒘1:𝑁 values

҉ Get matrix V: basis matrix 

− Edit w

҉ 𝒘′ = 𝒘+ 𝑽𝒙

✓ x is composed of constants to control the value of w on new axes, and set by user

҉ Assume only one w is used for image generation
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Background
• PCA of latent vectors

▪ BigGAN[2]

− Perform PCA at an intermediate network layer i

҉ The output of 1st layer is used, as the performance was better than using any other output tensor

− How to do?

҉ Sample N  random vectors 𝒛1:𝑁

҉ Compute 𝒚𝑗 = 𝐺𝑖(𝒛𝑗)

҉ Compute PCA of these 𝒚1:𝑁 values

✓Get low-rank basis matrix V, data mean 𝜇

҉ Get PCA coordinates 𝒙𝒋 of each feature tensor: 𝒙𝒋 = 𝑽𝑻(𝒚𝒋 − 𝜇)

҉ 𝒖𝒌 = argmin σ𝑗 ||𝒖𝒌𝑥𝑗
𝑘 − 𝒛𝒋||

𝟐, where 𝑥𝑗
𝑘 is the  k th value of 𝒙𝒋

− Edit z

҉ 𝒛′ = 𝒛 + 𝑼𝒙

✓ x is composed of constants to control the value of z on new axes, and set by user
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GAN and PCA
• Results and findings

▪ Find specific principal axes & layers

− E(𝑣𝑗 , 𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑛𝑑): edit latent vector using j th principal axis from ‘start’ layer to ‘end’ layer
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StyleGAN BigGAN

±𝟐𝝈 ±𝟐𝝈



GAN and PCA
• Results and findings

▪ Edit w, z using principal axes
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StyleGAN

𝒗𝟎

𝒗𝟏

𝒗𝟐

𝒗𝟏𝟗

𝒗𝟏𝟖

𝒗𝟏𝟕

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒖𝟏𝟕

𝒖𝟏𝟖

𝒖𝟏𝟗

BigGAN

±𝟐𝝈 ±𝟐𝝈



GAN and PCA
• Results and findings

▪ How many dimensions are important to image synthesis?

− Investigation of variance captured in each dimension of the PCA for the FFHQ StyleGAN model

҉ First 100 dimensions capture 85% of the variance; first 200 dimensions capture 92.5%
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𝒘 ← 𝐕𝑲𝐕𝑲
𝑻 𝒘 − 𝝁 + 𝝁,

where V𝐾 are the columns for the 

first K principal components



GAN and PCA
• Results and findings

▪ Where are the ws?

− Investigation of distribution of w: p(w)

҉ By investigating of p(𝒙𝟎, 𝒙𝟏, … ,𝒙𝟓𝟏𝟏)
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Marginal distribution of 𝒙𝟎, 𝒙𝟏𝟖, 𝒙𝟐𝟎, 𝒙𝟓𝟎

Mutual Information of 𝒙𝒋, 𝒙𝒌

=  KL(p(𝑥𝑗, 𝑥𝑘) || p(𝑥𝑗)p(𝑥𝑘)) 

=  − 𝐻 𝑥𝑗 , 𝑥𝑘 +𝐻 𝑥𝑘 +𝐻 𝑥𝑗

𝑀𝐼(𝑥𝑗, 𝑥𝑘) ∈ 6.9,8.7 , 𝑖𝑓 𝑗 = 𝑘
∈ 0, 0.3 , 𝑒𝑙𝑠𝑒

Almost 

Independent!



GAN and PCA
• Results and findings

▪ Undesirable properties inherited from GAN’s training set

− Entanglement
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GAN and PCA
• Results and findings

▪ Undesirable properties inherited from GAN’s training set

− Disallowed combination
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Masculinity / Feminity
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g
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Conclusion
• GAN control using PCA

▪ We can control contents of images generated by GAN whose layers share same input like z, w 

in BigGAN, StyleGAN.

▪ Even, for StyleGAN, we can get w w/o computing 8-MLP when we do inference.

• Limitations

▪ Heavily depending on GAN’s training dataset.

▪ Need to find every direction & layers for specific control.
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