Faster and Lighter Vision Transformer - 2022 동계 세미나 -

심 재 헌

Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

Outline

- Vision Transformer
- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
- MobileViT: Light-weight, General-Purpose, and Mobile-friendly Vision Transformer
- Conclusion

Vision Transformer

- An Image is Worth 16x16 Words
 - Transformer for Vision Task
 - Originally designed for NLP sequential data
 - Convolution not necessary
 - No dependency on CNNs

Procedure

- 1. Split an image into patches (16x16)
- 2. Linear Embedding
- 3. Add positional embeddings
- 4. Feed sequence into Transformer

Transformer Encoder

MLP

Norm

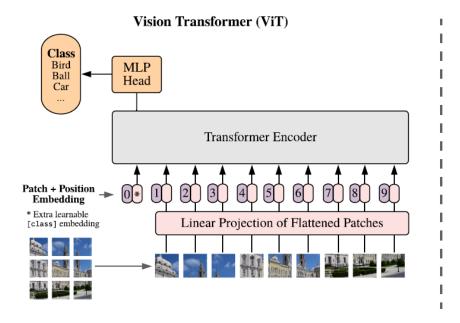
+

Multi-Head

Attention

Norm

Embedded Patches



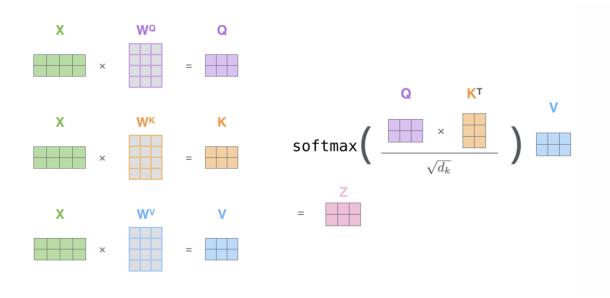
Vision Transformer

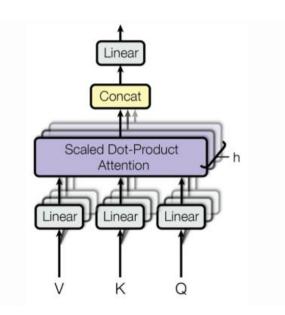
- Self-attention
 - Scaled Dot-Product
 - Multiple Scaled Dot-Product Attention → Multi-head attention

 $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

 $Q = XW^Q, \qquad K = XW^K, \qquad V = XW^V$

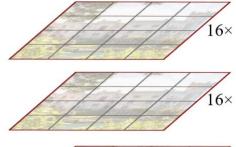
Q: query, K: key, V: value, X: input W^Q , W^K , W^V : weight matrix



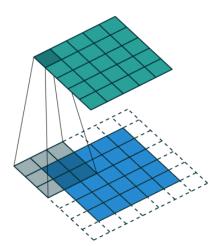


Vision Transformer

- Problems
 - No overlapping regions
 - No locality
 - Not translationally equivariant (No inductive bias)
 - Englished the set the set of the
 - Unified resolution
 - Equal resolution features for all layers
 - Dense prediction (segmentation, detection...) difficult
 - Computationally inefficient
 - Large model size
 - Slow inference speed
 - Large FLOPs (floating-point operations)



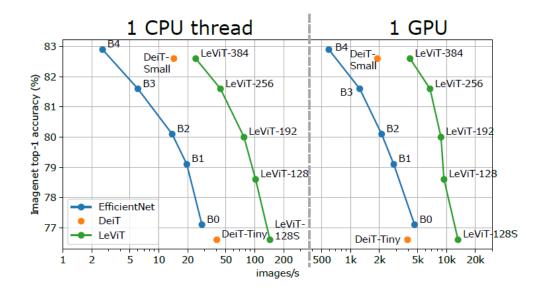
Vision Transformer



Convolution Neural Network

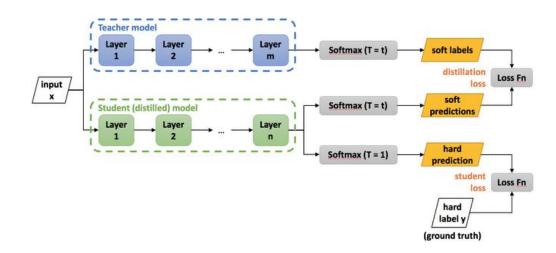
LeViT: Introduction

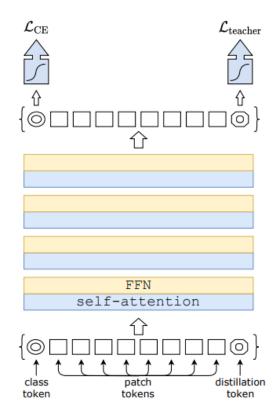
- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
 - Faster Vision transformer
 - Recent works focus only on decreasing model size & theoretical computation (FLOPs)
 - Re-introduce convolutional components into Vision Transformer
 - Trade off between attention computation and convolutions



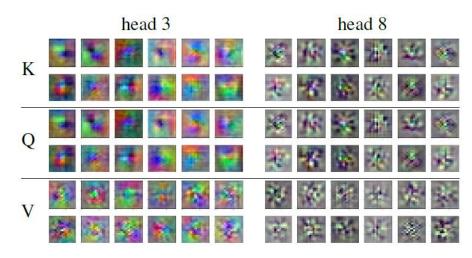
LeViT: Background

- DeiT: Training data-efficient image transformers & distillation through attention
 - Using only ImageNet-1k to train ViT
 - Original ViT trained on JFT-300M
 - Use knowledge distillation for ViT
 - Schultzeiten Token instead of class token
 - StregNetV-16FG as teacher

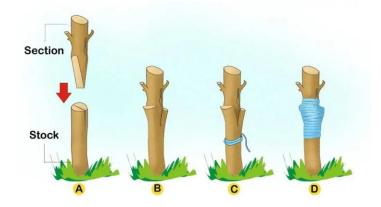




- Convolutions in the ViT architecture
 - Key, query, values formed by multiplying learned weights
 - Similar to convolutional functions to the input
 - Attention weights resemble that of convolutional layers
 - Spatial smoothness
 - Overlapping properties of convolutions
 - Smoothness property applied to ViT through data augmentation



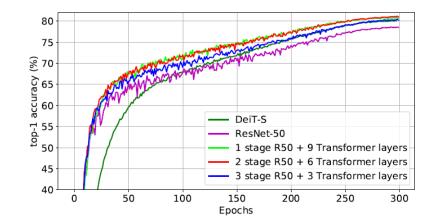
- Grafting
 - Combination of ResNet & ViT
 - Original paper claims that it is not very effective
 - Street Only ViT is better
 - Extensive experiments necessary



	Epochs	ImageNet	ImageNet ReaL	CIFAR-10	CIFAR-100	Pets	Flowers	exaFLOPs
name								
ViT-B/32	7	80.73	86.27	98.61	90.49	93.40	99.27	55
ViT-B/16	7	84.15	88.85	99.00	91.87	95.80	99.56	224
ViT-L/32	7	84.37	88.28	99.19	92.52	95.83	99.45	196
ViT-L/16	7	86.30	89.43	99.38	93.46	96.81	99.66	783
ViT-L/16	14	87.12	89.99	99.38	94.04	97.11	99.56	1567
ViT-H/14	14	88.08	90.36	99.50	94.71	97.11	99.71	4262
R50x1+ViT-B/32	7	84.90	89.15	99.01	92.24	95.75	99.46	106
R50x1+ViT-B/16	7	85.58	89.65	99.14	92.63	96.65	99.40	274
R50x1+ViT-L/32	7	85.68	89.04	99.24	92.93	96.97	99.43	246
R50x1+ViT-L/16	7	86.60	89.72	99.18	93.64	97.03	99.40	859
R50x1+ViT-L/16	14	87.12	89.76	99.31	93.89	97.36	99.11	1668

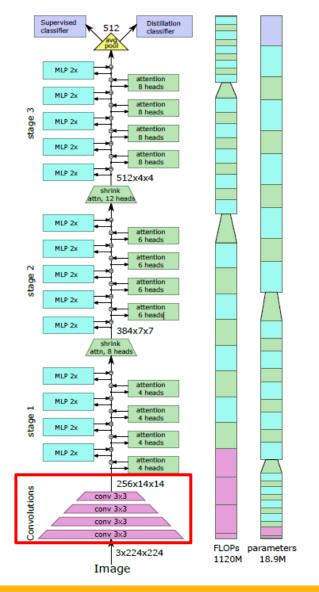
- Grafting
 - Combination of ResNet-50 and DeiT-Small
 - Mixture of ResNet and DeiT block under similar computational budgets
 - Results
 - Mixing two stages of ResNet with DeiT showed best results
 - Combined model showed fast convergence

#Res stag		#DeiT-S layers	nb. of Params	FL conv	OPs (M) transformer	Speed im/s	IMNET top-1
()	12	22.0M	57	4519	966	79.9
1	l	9	17.1M	820	3389	995	80.6
2	2	6	13.1M	1876	2260	1048	80.9
3	3	3	15.1M	3385	1130	1054	80.1
2	1	0	25.5M	4119	0	1254	78.4



- Model Design
 - VGG style Convolution blocks added to DeiT
 - Less computation compared to ResNet
 - Server: 1042M FLOPs
 - steries VGG : 1084M FLOPs
 - Fast resolution shrink
 - No classification token
 - BCHW tensor used \rightarrow positional information preserved
 - Attention bias instead of positional embedding
 - Positional embedding important to ViT performance
 - Include positional embedding to every attention block in the form of bias

$$A^{h}_{(x,y),(x',y')} = Q_{(x,y),:} \bullet K_{(x',y'),:} + B^{h}_{|x-x'|,|y-y'|}$$



• Model Design

SOGANG UNIVERSITY

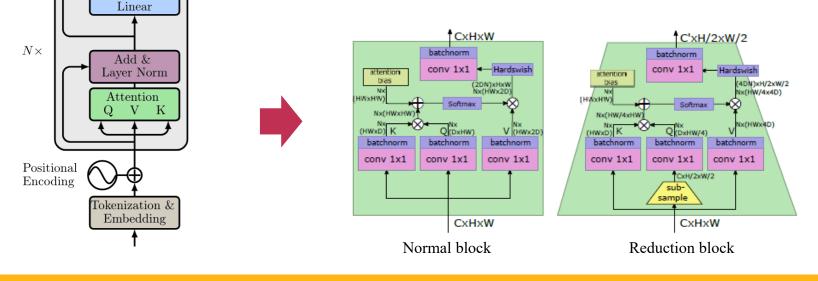
- Reduction block
 - Following ResNet structure

Add &

Laver Norm

- Pyramid structure

- Convolution instead of MLP
 - No classification token
 - Strage pooling used instead
 - Linear embedding \rightarrow 1x1 conv
 - \Leftrightarrow Layer Norm \rightarrow BatchNorm
 - Feed forward MLP also to conv



LeViT: Experiments

- Experiment Settings
 - DeiT as Baseline
 - Test on various hardware platforms
 - 16GB NVIDIA Volta GPU
 - Intel Xeon 6138 CPU
 - ARM Graviton2 CPU

Model	LeViT-128S (D = 16, p = 0)	LeViT-128 (D = 16, p = 0)	LeViT-192 (D = 32, p = 0)	LeViT-256 (D = 32, p = 0)	LeViT-384 (D = 32, p = 0.1)
Stage 1: 14 × 14	$2 \times \begin{bmatrix} C = 128 \\ N = 4 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 128 \\ N = 4 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 192 \\ N = 3 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 256\\ N = 4 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 384 \\ N = 6 \end{bmatrix}$
Subsample	$\left[\begin{array}{c}N=8\end{array}\right]$	$\left[\begin{array}{c}N=8\end{array}\right]$	$\left[\begin{array}{c}N=6\end{array}\right]$	$\left[\begin{array}{c}N=8\end{array}\right]$	[N=12]
Stage 2: 7×7	$3 \times \begin{bmatrix} C = 256 \\ N = 6 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 256 \\ N = 8 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 288\\ N = 5 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 384 \\ N = 6 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 512 \\ N = 9 \end{bmatrix}$
Subsample	[N=16]	[N=16]	[N=9]	[N=12]	[N=18]
Stage 3: 4×4	$4 \times \begin{bmatrix} C = 384 \\ N = 8 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 384 \\ N = 12 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 384 \\ N = 6 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 512\\ N = 8 \end{bmatrix}$	$4 \times \begin{bmatrix} C = 768\\ N = 12 \end{bmatrix}$

Model structures. First four convolution layers are applied equally to all models.

LeViT: Experiments

• Results on ImageNet-1k

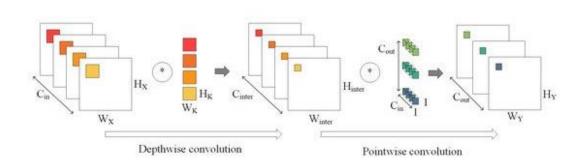
	# params	FLOPs		inferenc	e speed		Imag	eNet
			top-1	GPU	Intel	ARM	-Real	-V2.
Architecture	(M)	(M)	%	im/s	im/s	im/s	%	%
LeViT-128S (ours)	7.8	305	76.6	12880	131.1	39.1	83.1	64.3
EfficientNet B0	5.3	390	77.1	4754	30.1	3.5	83.5	64.3
LeViT-128 (ours)	9.2	406	78.6	9266	94.0	30.8	84.7	66.6
LeViT-192 (ours)	10.9	658	80.0	8601	65.0	24.2	85.7	68.0
EfficientNet B1	7.8	700	79.1	2882	20.0	2.3	84.9	66.9
EfficientNet B2	9.2	1000	80.1	2149	13.1	1.3	85.9	68.8
LeViT-256 (ours)	18.9	1120	81.6	6582	42.5	16.4	86.8	70.0
DeiT-Tiny	5.9	1220	76.6	3973	39.1	16.8	83.9	65.4
EfficientNet B3	12	1800	81.6	1272	5.9	0.8	86.8	70.6
LeViT-384 (ours)	39.1	2353	82.6	4165	23.1	9.4	87.6	71.3
EfficientNet B4	19	4200	82.9	606	2.5	0.5	88.0	72.3
DeiT-Small	22.5	4522	82.6	1931	13.7	7.6	87.8	71.7

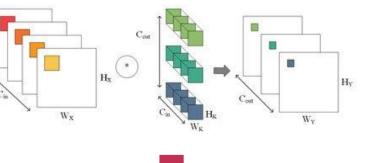
MobileViT: Introduction

- <u>MobileViT: Light-weight, General-Purpose, and Mobile-friendly Vision Transformer</u>
 - Combine the strengths of CNNs and ViTs to build a light-weight and low latency network for mobile devices
 - Performance of light-weight ViTs are not enough
 - SE DeIT is 3% less accurate compared to MobileNetv3
 - FLOPs do not accurately reflect inference speed
 - Fit has 3x less FLOPs than DeIT. But similar inference speed on mobile device
 - Complex training recipes of previous ViTs
 - Aim for better performance than conventional light-weight CNNs with basic training recipes
 - Section & robust to hyper-parameters (data augmentation and L2 regularization)

MobileViT: Background

- MobileNetV1: Depthwise Separable Convolution
 - Divide Standard Convolution into Depthwise & Pointwise Convolution
 - Parameters
 - Standard: $W_K \times H_K \times C_{out} \times C_{in}$
 - Depthwise: $(W_K \times H_K + C_{out}) \times C_{in}$
 - Computation
 - Standard: $W_K \times H_K \times C_{out} \times C_{in} \times W_Y \times H_Y$
 - Depthwise: $(W_K \times H_K + C_{out}) \times C_{in} \times W_Y \times H_Y$

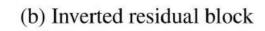


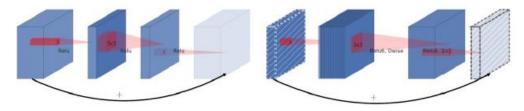


MobileVit: Background

- MobileNetV2: Inverted Residual Block
 - Residual (Bottleneck) vs Inverted Residual
 - Reverse classical Residual Block

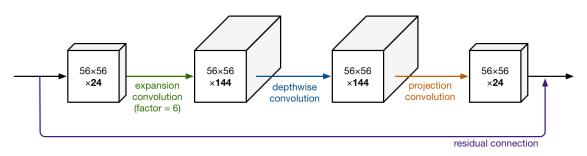
(a) Residual block



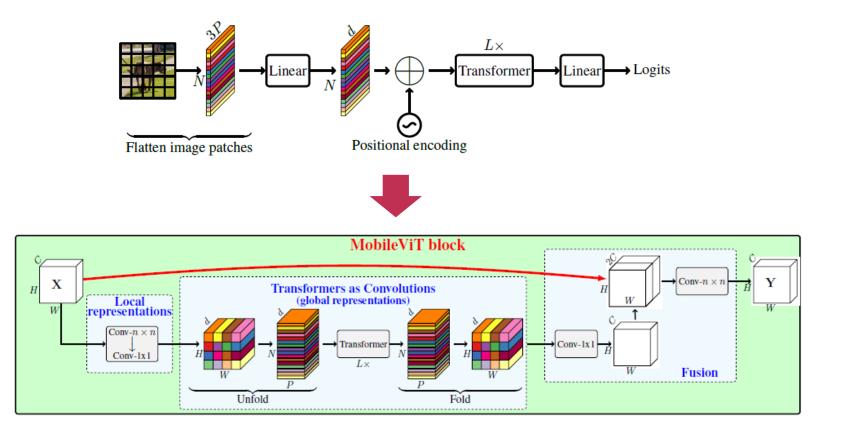


- Inverted Residual Block Structure

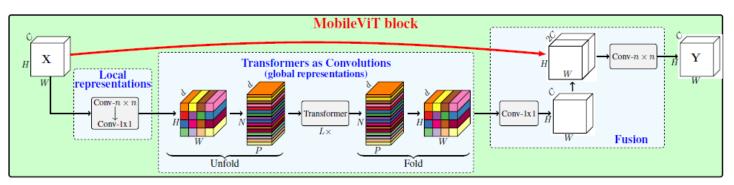
- Now a standard for many light-weight models (ex. ShuffleNet, EfficientNet, MobileNetV3 etc.)



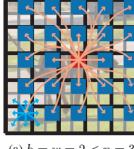
• MobileViT block



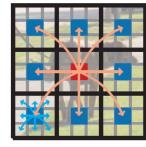
- MobileViT block
 - Local spatial information
 - n x n conv + pointwise conv
 - Global information
 - Using transformer
 - 1 conv = unfold \rightarrow matrix multiplication \rightarrow fold
 - Transformers as convolutions
 - Absence of linear projection
 - No need for positional embeddings



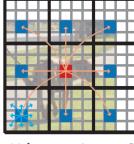
- Effect of convolution + transformer
 - Kernel size (n x n) & patch size (h x w)



(a) h = w = 2 < n = 3

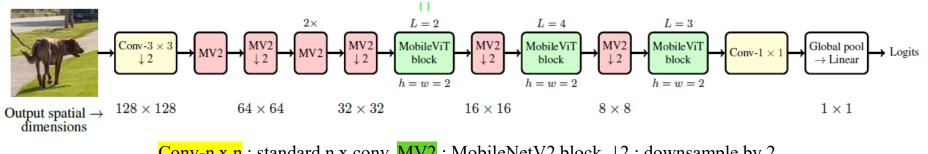


(b) h = w = n = 3



(c) h = w = 4 > n = 3

• Overall architecture



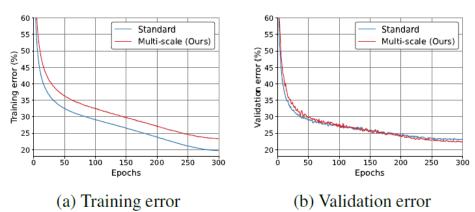
Conv-n x n : standard n x conv, MV2 : MobileNetV2 block, \downarrow 2 : downsample by 2

- Multi-scale Sampler for Training Efficiency
 - Multi-scale learning only possible through fine-tuning for standard ViTs

- Position embeddings need to be interpolated based on the input size

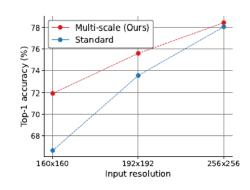
- No position embedding necessary for MobileViT
- Multi-scale learning with variably-size batch sizes
 - For randomly sampled spatial resolution of (H_t, W_t)
 - Batch size for t-th iteration: $b_t = \frac{H_n W_n b}{H_t W_t}$

- Faster training & better generalization performance



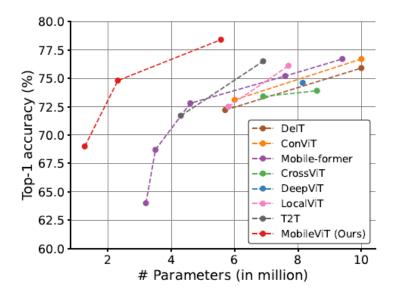
SOGANG UNIVERSITY

Sampler	# Updates	Epoch time
Standard	375 k	380 sec
Multi-scale (ours)	232 k	270 sec



(c) Validation acc. vs. input resolution

- Results on ImageNet-1k
 - Augmentation
 - Basic : Only standard augmentation techniques for CNN (e.g. ResNet)
 - Advanced : Combination of augmentation methods (e.g. MixUp, CutMix)



Row #	Model	Augmentation	# Params. 🌡	Top-1 🁚
R1	DeIT	Basic	5.7 M	68.7
R2	T2T	Advanced	4.3 M	71.7
R3	DeIT	Advanced	5.7 M	72.2
R4	PiT	Basic	10.6 M	72.4
R5	Mobile-former	Advanced	4.6 M	72.8
R 6	PiT	Advanced	4.9 M	73.0
R 7	CrossViT	Advanced	6.9 M	73.4
R 8	MobileViT-XS (Ours)	Basic	2.3 M	74.8
R9	CeiT	Advanced	6.4 M	76.4
R10	DeIT	Advanced	10 M	75.9
R11	T2T	Advanced	6.9 M	76.5
R12	ViL	Advanced	6.7 M	76.7
R13	LocalVit	Advanced	7.7 M	76.1
R14	Mobile-former	Advanced	9.4 M	76.7
R15	PVT	Advanced	13.2 M	75.1
R16	ConViT	Advanced	10 M	76.7
R17	PiT	Advanced	10.6 M	78.1
R18	BoTNet	Basic	20.8 M	77.0
R19	BoTNet	Advanced	20.8 M	78.3
R20	MobileViT-S (Ours)	Basic	5.6 M	78.4

- Results on Detection
 - SSDLite on MS-COCO

Feature backbone	# Params. 🌡	mAP ↑
MobileNetv3	4.9 M	22.0
MobileNetv2	4.3 M	22.1
MobileNetv1	5.1 M	22.2
MixNet	4.5 M	22.3
MNASNet	4.9 M	23.0
MobileViT-XS (Ours)	2.7 M	24.8
MobileViT-S (Ours)	5.7 M	27.7

(a) Comparison w/ light-weight CNNs

Feature backbone	# Params. 🌡	mAP ↑
VGG	35.6 M	25.1
ResNet50	22.9 M	25.2
MobileViT-S (Ours)	5.7 M	27.7

(b) Comparison w/ heavy-weight CNNs

- Results on Segmentation
 - DeepLabv3 on PASCAL VOC 2012

Feature backbone	# Params. \downarrow	mIOU↑
MobileNetv1	11.2 M	75.3
MobileNetv2	4.5 M	75.7
MobileViT-XXS (Ours)	1.9 M	73.6
MobileViT-XS (Ours)	2.9 M	77.1
ResNet-101	58.2 M	80.5
MobileViT-S (Ours)	6.4 M	79.1

• Results on mobile device

• Iphone 12 neural engine

Model	# Params. \downarrow	FLOPs ↓	Time ↓	Тор-1 ↑
(R1) DeIT	5.7 M	1.3 G	10.99 ms	72.2
(R2) PiT	4.9 M	0.7 G	10.56 ms	73.0
(R3) MobileViT-XS (Ours; 8,4,2)	2.3 M	0.7 G	5.93 ms	73.8
(R4) MobileViT-XS (Ours; 2,2,2)	2.3 M	0.7 G	7.28 ms	74.8

(a) Comparisons with other light-weight ViTs

Model	# Params. ↓	FLOPs ↓	Time ↓	Top-1 ↑	Backbone	# Params. ↓	FLOPs ↓	Time ↓	mAP ↑
MobileNetv2	3.5 M	0.3 G	0.92 ms	73.3	MobileNetv2	4.3 M	0.8 G	2.3 ms	22.1
MobileViT-XS (Ours; 8,4,2)	2.3 M	0.7 G	5.93 ms	73.8	MobileViT-XS (Ours; 8,4,2)	2.7 M	1.6 G	10.7 ms	23.1
MobileViT-XS (Ours; 2,2,2)	2.3 M	0.7 G	7.28 ms	74.8	MobileViT-XS (Ours;2,2,2)	2.7 M	1.6 G	12.6 ms	24.8

(a) ImageNet-1k classification

Backbone	# Params. ↓	FLOPs ↓	Time ↓	mIOU↑
MobileNetv2	4.3 M	5.8 G	6.5 ms	75.7
MobileViT-XS (Ours)	2.9 M	5.7 G	25.1 ms	75.4
MobileViT-XS (Ours)	2.9 M	5.7 G	32.3 ms	77.1

(c) Semantic segmentation w/ DeepLabv3.

(b) Object detection w/ SSDLite.

- Discussion
 - Lack of hardware optimization for ViTs
 - ViTs are slower than CNNs on mobile platform
 - CUDA kernels exists for GPU but not for mobile
 - CPU is optimized for variable devices

Kernel	Theoretical	Time	Theoretical
size	FLOPs (B)	usage (ms)	TFLOPS
1×1	420.9	84.5	9.96
3×3	3788.1	198.8	38.10
5×5	10522.6	2092.5	10.57
7×7	20624.4	4394.3	9.38

FLOPs & Time of Convolution Operators on 1080Ti GPU

Model	# Params ↓	FLOPs ↓	Top-1 ↑↑ _	Inference time ↓↓		
				iPhone12 - CPU	iPhone12 - Neural Engine	NVIDIA V100 GPU
MobileNetv2	3.5 M	0.3 G	73.3	7.50 ms	0.92 ms	0.31 ms
DeIT	5.7 M	1.3 G	72.2	28.15 ms	10.99 ms	0.43 ms
PiT	4.9 M	0.7 G	73.0	24.03 ms	10.56 ms	0.46 ms
MobileViT (Ours)	2.3 M	0.7 G	74.8	17.86 ms	7.28 ms	$0.62 \text{ ms}/0.47 \text{ ms}^{\dagger}$

Comparison of ViT models and MobileNetv2 inference speed on different hardware platforms

Conclusion

- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
 - Incorporation of CNN into Vision Transformers for faster inference
 - Replacement of MLP based operations to convolution-based operations

 \therefore MLP \rightarrow 1x1 conv, layer norm \rightarrow batchnorm

- Trade-off between CNN + ViT mixture model

Applying convolutional layers to early stages of ViT

- MobileViT: Light-weight, General-Purpose, and Mobile-friendly Vision Transformer
 - MobileViT block
 - Combination of convolution and self-attention to consider both local and global context
 - Incorporation of MobileViT block within pre-defined MobileNetV2
 - Hight performance of ViT + computational efficiency of MobileNet

Reference

- Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." *arXiv preprint arXiv:1704.04861* (2017).
- Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.
- Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." *International Conference on Learning Representations*. 2020.
- Touvron, Hugo, et al. "Training data-efficient image transformers & distillation through attention." *International Conference on Machine Learning*. PMLR, 2021.
- Graham, Ben, et al. "LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference." *arXiv preprint arXiv:2104.01136* (2021).
- Mehta, Sachin, and Mohammad Rastegari. "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer." *arXiv preprint arXiv:2110.02178* (2021).

