Towards to fast neural rendering

Introduction to recent methods of efficient and fast neural rendering

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented By Hosung Son

Contents

• Introduction

- What is NeRF?
- Challenges of NeRF
- Papers
 - Knowledge Distillation
 - -R2L [ECCV2022]
 - Ray sampling
 - -EfficientNeRF [CVPR 2022]
- Conclusion

What is NeRF?

- Definition
 - Novel view synthesis with neural network by construct radiance field.
 - Implicit function mapping between 5D input data and 4D Output data.

Optimize NeRF

-Explicit(양함수) vs. Implicit(음함수) ?

$$\begin{cases} \begin{cases} x \\ f_{explicit} \end{cases} = \left\{ \begin{pmatrix} x \\ y \\ f_{explicit}(x, y) \end{pmatrix} \middle| \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \right\}$$

$$\Leftrightarrow Ex) f(x, y) = x^2 - y + 1$$

$$\Leftrightarrow S_{implicit} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^2 \middle| f_{implicit}(x, y, z) = k \right\}$$

$$\Leftrightarrow Ex) x^y - 2y + e^z = 3$$

Examples of view synthesis by NeRF

Render new views

Novel view synthesis process with NeRF

Input Images

What is NeRF?

- Pipeline of NeRF
 - Data loading
 - -Images, Camera poses(extrinsic), Intrinsic, Render poses(extrinsic), Sampling depth(near, far)
 - Coarse sampling
 - -2D Pixels in image plane \rightarrow 3D Points in world coordinates
 - -Coarse sample $N_c(64)$ points along a query ray
 - Fine sampling
 - Additional sample $N_f(128)$ points based on queried density value(σ)

: Get density value passing through network query function

 \therefore High density \rightarrow Dense sampling

What is NeRF?

- Pipeline of NeRF
 - MLP
 - -10 MLP Layers
 - -Positional Encoding(γ)
 - si: It helps model represent high frequency region
 - s;: L=10 for x, L=4 for d
 - $\gamma(p) = \left(\sin\left(2^0\pi p\right), \cos\left(2^0\pi p\right), \cdots, \sin\left(2^{L-1}\pi p\right), \cos\left(2^{L-1}\pi p\right)\right)$
 - Rendering

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

Volume rendering equation

Loss function

SOGANG UNIVERSITY

$$\mathcal{L} = \sum_{\mathbf{r}\in\mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

L2 Loss function (Coarse + Fine)

Comparison of model learning results based on absence of PE

Challenges of NeRF

- Limitation of generalization
 - Struggle to synthesize unseen scenes
 - -NeRF model has low inductive bias
 - FC-layers just mapping 5D input to 4D output.
 - Time consumption*
 - -Training(optimizing) time
 - Stephen State: SMB
 - 30~50 hours for NeRF-synthetic dataset .
 - \$\$20~36 hours for *forward-facing scene* dataset.
 - Testing(rendering) time
 - :;: 0.023 fps(43s) for NeRF-synthetic dataset.
 - ::: 0.018 fps(55s) for *forward-facing scene* dataset.

NeRF-synthetic dataset

forward-facing dataset

Challenges of NeRF

- Why reducing time consumption is important?
 - If we want to serve the "NeRF" to people as a program or mobile application, people wouldn't ready for 4~50 seconds to get synthesized view images of their own contents.
 - Training(optimization) time is related to how many times be taken to reconstruct radiance field of the contents.
 - Testing(Inference) time is related to how fast the model can render novel view images from reconstructed radiance field.
- How can we reduce the time consumption of NeRF?

 - Number of rays for rendering
 - Size of the model

Computational complexity
 R2L

• R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]

R2L structure and Visualization of performance improvement

Contribution

- First attempt to improve the rendering efficiency via network architecture optimization.
- Proposed an <u>effective training</u> strategy by distilling knowledge from a pre-trained NeRF.
- Achieved $26 \sim 35 \times$ FLOPs, $28 \sim 31 \times$ inference time reduction over the original NeRF.
- Key methods
 - From "NeRF" to "NeLF" knowledge distillation
 - Long skip connection and repeated deep residual MLP blocks architecture
 - Training hard examples

- R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]
 - Light field
 - -Advantages
 - \Rightarrow One evaluation per pixel \rightarrow methodologically straightforward for novel view synthesis.
 - Since NeLF outputs the RGB color of a queried ray while NeRF outputs the radiance of a sampled point along a ray.

- Drawbacks

Neural light field rendering

Sis NeLFs tend to considerable storage costs and harder to learn than radiance field.

✓Compute concatenate samples and render them in a single forward pass.

✓ Radiance at neighbor spaces does not change dramatically given the radiance field while two neighbor rays can point to starkly different colors because of occlusion.

They are hard to achieve a full 360° representation without concatenating multiple light fields.

- R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]
 - Deep residual MLP structure
 - To learn light field, network optimizes the concatenated high-dimensional samples along a ray.
 - NeLF should have deep layer neural network architecture.
 - -Bunch of networks

SOGANG UNIVERSITY

For ablation study 5: 6M FLOPs per ray: W181D88, W256D44, W363D22

the set of the set of

- (a) Comparison between NeLF and NeRF structure
- (b) Detailed architecture of the *deep* light field network

3153895352328 WW FBCW FE 28 $\left(\begin{array}{c} {\rm gp} \end{array}
ight)^{26}$ W363D22 (test W363D22 (train) NSA 24 W256D44 (test) W256D44 (train) 22W181D88 (test) W181D88 (train) W128D178 (test) 20W128D178 (train) 50100150200Iteration (k) **Depth-width tradeoff** w/o residuals (test) w/o residuals (train) residuals (test) residuals (train) 25 50 100125150175200Iteration (k)

With vs. without residuals

• R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]

SUNIFORMLY SAMPLED K points along a ray.

-Train points

Steries Randomly sampled K points while each point are randomly sampled in a segment.

Training hard examples

- In training, Model maintain a hard example pool which have larger loss.

Add the top r (pre-defined percentage constant) points to hard example pool.

- The same amount *r* of hard examples are randomly picked out of the pool to augment the training batch in each iteration.

- R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]
 - Knowledge distillation for synthesize pseudo-data
 - Employ a pre-trained NeRF model to synthesize extra pseudo-data for training.
 - Strength NeLF needs sufficient training data to optimize deep MLPs
 - ✓"*Lego*" scene of the NeRF-*synthetic* dataset has only 100 training images.
 - Stife Where to sample to synthesize the pseudo data?

✓Randomly sample the normalized ray origin, ray direction of the original training data. ✓The bounding box can be inferred from the training data (min, max) $x_o \sim U(x_o^{\min}, x_o^{\max}), y_o \sim U(y_o^{\min}, y_o^{\max}), z_o \sim U(z_o^{\min}, z_o^{\max})$ $x_d \sim U(x_d^{\min}, x_d^{\max}), y_d \sim U(y_d^{\min}, y_d^{\max}), z_d \sim U(z_d^{\min}, z_d^{\max})$

- R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]
 - Knowledge distillation for synthesize pseudo-data

- Employ a pre-trained NeRF model to synthesize extra pseudo-data for training.

Visualization of the origins and directions in 3D space (Row1: real-world scene *Fern*, Row2: synthetic scene *Lego*)

- R2L: Distilling NeRF to NeLF for Efficient Novel View Synthesis [ECCV2022]
 - Knowledge distillation for synthesize pseudo-data
 - -Employ a pre-trained NeRF model to synthesize extra pseudo-data for training.

Mathad	Stanage (MD)	ELOD: (M)	Synthetic			Real-world		
Method	Storage (MB)	FLOPS (M)	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	$SSIM\uparrow$	LPIPS↓
Teacher NeRF [34]	2.4	303.82	30.47	0.9925	0.0391	27.68	0.9725	0.0733
Ours-1 (Pseudo)	23.7	11.79	30.48(+0.01)	0.9939	0.0467	27.58 (-0.10)	0.9722	0.0997
Ours-2 (Pseudo+real)	23.7	11.79	31.87(+1.40)	0.9950	0.0340	27.79 (+0.11)	0.9729	0.0968
Teacher NeRF in [43]	2.4	303.82	31.01	0.95	0.08	5		
KiloNeRF [43]	38.9	$\sim 500^{\dagger}$	31.00 (-0.01)	0.95	0.03	7	-	-
Teacher NeRF in [4]	4.6	~ 300	5	17	7	27.928	0.9160	0.065
RSEN [4]	5.4	67.2	8	-	8	27.941 (+0.013)	0.9161	0.060

• EfficientNeRF: Efficient Neural Radiance Fields [CVPR2022]

Contributions

- *First* work to significantly accelerate both training(88%↓) and testing(200fps↑) of NeRF-based methods while maintaining reasonable accuracy.
- "Valid Sampling" was proposed by constructing dynamic Voxels to accelerate the sampling process at the coarse stage and "Pivotal Sampling" at the fine stage.
- A simple and efficient data structure, NerfTree, was proposed for NeRF-based methods.

It quickly caches and queries 3D scenes, thus improving the rendering speed by over 4000 times.

- Key methods
 - Valid Sampling
 - -Pivotal Sampling
 - -NerfTree

Training and testing efficiency on NeRF-synthetic dataset

- EfficientNeRF: Efficient Neural Radiance Fields [CVPR2022]
 - Why the original NeRF computes even un-necessary points having sparse density?
 - Original NeRF uniformly samples the points along a ray in coarse and fine stage.

- For common scenes with uniformly sampling, there are only around 10~20% of valid samples and 5~10% are pivotal samples.

Scene	Chair	Drums	Ficus	Hotdog	Lego	Materials	Mic	Ship	Mean
Valid Samples (V, %)	9.58 %	7.00~%	3.85 %	9.35 %	15.43 %	19.47 %	8.44 %	11.32 %	10.56 %
Pivotal Samples (P, %)	3.79 %	2.25%	1.68~%	3.59 %	5.81 %	7.42 %	3.14 %	4.62 %	4.04 %
Scene	Fern	Flower	Fortress	Horns	Leaves	Orchids	Room	Trex	Mean
Valid Samples (V, %)	24.28 %	13.68 %	23.45 %	21.34 %	15.09%	19.74 %	30.62 %	18.27 %	20.81%
Pivotal Samples (P, %)	15.63 %	7.49 %	4.48 %	10.45 %	8.49%	9.43 %	15.23 %	7.89 %	9.89 %

Proportions of valid and pivotal samples on the NeRF-synthetic dataset and Forward-Facing dataset - Sample proportion

 $\approx N_{v}$: number of samples have density $\sigma_{v} > 0$ along a ray.

 $:: N_p:$ number of samples have weight $w_p > \epsilon$ along a ray. $\rightarrow 1 \times 10^{-4}$

 $:: N_c:$ Number of samples in coarse stage

 \lesssim Valid sample proportion $V = \frac{N_v}{N_c}$

 \therefore Valid sample proportion $P = \frac{N_p}{N_c}$

Density and weight distributions of a typical ray

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} w_i c_i,$$

 $w_i = T_i \alpha_i, \
ightarrow$ contribution to render color

$$T_{i} = exp(-\sum_{j=1}^{i-1} \sigma_{j}\delta_{j}),$$

$$\alpha_{i} = 1 - exp(-\sigma_{i}\delta_{i}),$$

Volume rendering equation

• EfficientNeRF: Efficient Neural Radiance Fields [CVPR2022]

- Valid Sampling at the Coarse Stage
 - -Density voxels V_{σ}
 - \Leftrightarrow Size: $D \times D \times D$

 \pm : Initialization: All voxel density value set to $\varepsilon = 10.0$

::: 3D Voxel index $i \in \mathbb{R}^3$

$$\checkmark \mathbf{i} = \frac{\mathbf{x} - \mathbf{x}_{min}}{\mathbf{x}_{max} - \mathbf{x}_{min}} D$$

set <u>Update</u> for every training iteration by Momentum

$$\checkmark V_{\sigma}[\mathbf{i}] \leftarrow (1 - \beta) V_{\sigma}[\mathbf{i}] + \beta \cdot \sigma_{c}(\mathbf{x}), \quad \beta \in [0, 1]$$

ε	Training Speed	$PSNR(\uparrow)$
0.1	0.018s / iter	31.54
1.0	0.021s / iter	31.68
10.0	0.057 s / iter	31.75

Influence of difference value of initial density $\boldsymbol{\varepsilon}$

Number of valid samples during training

- Valid Sampling at the Coarse Stage
 - -Sampling N_v valid point $V_{\sigma}[\mathbf{i}] > 0$
 - First query the latest density from V_{σ} , and only input \mathbf{x}_i with global densities $V_{\sigma}[\mathbf{i}] > 0$
 - -Time taken
 - $:: N_{v}T_{m} + (N_{c} N_{v})T_{q}$

 $\checkmark T_m$: Time for inferring a single point by a coarse MLP.

 $\checkmark T_q$: Time for querying a single point from voxels.

- Acceleration ratio A_c

$$\lim_{c \to \infty} A_c = \frac{N_c T_m}{N_v T_m + (N_c - N_v) T_q} \approx \frac{N_c}{N_v} = \frac{1}{V}$$

65 55 45 35 25 15 5 0 40k 80k 120k 160k 200k 240k 65 55 45 55 0 40k 80k 120k 160k 200k 240k Mic 55 5 0 40k 80k 120k 160k 200k 240k

Pivotal Sampling at the Fine Stage

- -Sampling N_p follows the coarse weight distribution ($N_p = 2N_c$)
- -pivotal sample $\mathbf{x}_p : w_p > \epsilon$
- -sampling N_s points around \mathbf{x}_p

$$\lim_{n \to \infty} \mathbf{x}_{p,j} = \mathbf{x}_p + j\delta_f r_d$$

- Acceleration ratio A_f

$$\lim A_f = \frac{N_f}{N_p N_s} \approx \frac{2N_c}{N_p N_s} = \frac{2}{P N_s}$$

ϵ	Training Speed	PSNR (†)
1×10^{-2}	0.018s / iter	31.27
1×10^{-4}	0.021 s / iter	31.68
1×10^{-6}	0.029 s / iter	31.71

Influence of difference value of pivotal threshold ϵ

	Version	# Samj	oling	PSNR (1)	Rendering Speed (FPS, \uparrow)	
	version	Coarse	Fine	FSINK ()		
	N1	64	2	29.54	493.62	
EfficientNeDE	N2	64	3	30.49	403.28	
Enclentivert	N3	96	4	31.22	324.62	
	N4	128	5	31.68	238.46	

Different versions of our EfficientNeRF with Trade-off

• EfficientNeRF: Efficient Neural Radiance Fields [CVPR2022]

NerfTree

SOGANG UNIVERSITY

- Tree-based data structure (2-depth tree)
- -NerfTree can store the whole scene offline.
 - \rightarrow Eliminating the coarse and fine MLP.
- Dense voxels only have one depth layer.
 - \rightarrow Achieving the minimal access time and maximum storage.
- Octree has the opposite characteristic of the Dense voxels.
- -NerfTree combines the advantages of both Voxels and Octrees.

Si Fast speed while not much consuming storage.

```
- In experiments, D_c = 384, D_f = 4
```


2D graph representation of different 3D data structures

Scene Representation	Memory	Caching Time	Querying Time
Dense Voxels	16 GB	16.55 ms	13.64 ms
Sparse Tensor (Minkowski Engine [3])	2.1 GB	24.72 s	121.21 ms
Octree (PlenOctree [35])	2.6 GB	14.51 s	18.84 ms
NerfTree (Ours)	2.8 GB	22.43 ms	15.39 ms

Comparison of different data structures

• EfficientNeRF: Efficient Neural Radiance Fields [CVPR2022]

NerfTree

Inference	Speed (FPS)	PSNR (†)
Coarse and Fine MLPs	0.18	31.71
NerfTree	238.46	31.68

Comparison between different testing model

Coarse	MLP	Fine MLP		Time	DSNR(1)
Lightweight	Standard	Lightweight	Standard	$(s / iter, \downarrow)$	1 SINK()
	\checkmark		\checkmark	0.184	31.01
\checkmark		\checkmark		0.121	29.28
	\checkmark	\checkmark		0.132	29.39
\checkmark			\checkmark	0.138	30.96

Performance of different combinations

Method	PSNR (†)	Time (\downarrow)	Improvement (†)
NeRF [17]	31.01	0.184 s / iter	-
+ SH [35]	31.57	0.183 s / iter	-
+ Lightweight Coarse MLP	31.52	0.137 s / iter	25.54%
+ Coarse Valid Sampling	31.49	0.085 s / iter	53.80%
+ Fine Pivotal Sampling	31.68	0.021 s / iter	88.58%

Contributions of the proposed modules to the training time

Testing model for comparison using Spherical Harmonics

Conclusion

- Synthesizing pseudo data for sufficient training data by distilling from the Teacher.
- Reduce computational complexity by single forward pass in Light Field.
- Novel ray sampling strategy focusing on the meaningful sample points to reduce time consumption.
- For testing, 2-depth Tree structure improves model efficiency.

