2022 하계 세미나 How to Use VLP Models

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented by 조유빈

Outline

- Background
 - Vision-Language Pretraining (VLP)
 - Contrastive Language-Image Pretraining (CLIP)
- How to use CLIP
 - CLIP-Driven Segmentation

- CRIS: CLIP-Driven Referring Image Segmentation (CVPR 2022)

- CLIP-Driven Manipulation

- CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields (CVPR 2022)

• Conclusion

SOGANG UNIVE

- Vision-Language Pretraining (VLP) Models
 - 대용량의 image-text pair dataset으로 두 모달의 representations를 학습시킨 모델
 - 주로 contrastive learning을 사용하여 학습
 - Positive pair는 유사도가 커지도록, negative pair는 유사도가 작아지도록 학습
 - -Supervised / self-supervised / generative learning과 결합하여 학습되기도 함
 - Uni-modal task 또는 vision-language multi-modal task에서 높은 성능을 보임

- Classification / object detection / captioning / retrieval etc.

- ^[1] Contrastive Language-Image Pretraining (CLIP)
 - Contrastive pre-training
 - Aligning two modalities representations in a multi-modal embedding space
 - Maximize the cosine similarity of the image-text embeddings of the N real pairs
 - : Minimizing the cosine similarity of the embeddings of the N²-N incorrect pairs
 - Use for prediction (Image classification)

1. Contrastive pre-training

- [1] Contrastive Language-Image Pretraining (CLIP)
 - Results
 - CLIP's features are more robust to task shift when compared to models pre-trained on ImageNet
 - Zero shot CLIP model is compared with ResNet-101 that has the same performance on ImageNet validation set

• Using ^[1] CLIP (Accepted to CVPR 2022)

CLIMS: Cross Language Image Matching for Weakly Supervised Semantic Segmentation

Conditional Prompt Learning for Vision-Language Models

RegionCLIP: Region-based Language-Image Pretraining

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

CLIP-Event: Connecting Text and Images with Event Structures

ProposalCLIP: Unsupervised Open-Category Object Proposal Generation via Exploiting CLIP Cues

HairCLIP: Design Your Hair by Text and Reference Image

Simple but Effective: CLIP Embeddings for Embodied AI

PointCLIP: Point Cloud Understanding by CLIP

CRIS: CLIP-Driven Referring Image Segmentation

CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields

CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation

Disentangling visual and written concepts in CLIP

Causal CLIP Fine-tuning for Fashion Product Retrieval

DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation

CLIPstyler: Image Style Transfer with a Single Text Condition

Image Segmentation Using Text and Image Prompts

- CLIP-Driven Referring Segmentation : [1] CRIS
 - Referring image segmentation
 - Not limited to indicating specific categories but finding a particular region according to the input language expression
 - CLIP model learns powerful image-level visual concepts by aligning the textual representation with the image-level representation
 - Transfer the knowledge of the CLIP model from image level to pixel level
 - Visual-language decoder
 - Text-to-pixel contrastive learning

- CLIP-Driven Referring Segmentation : [1] CRIS
 - Cross-modal Neck
 - (Multiple visual features, global textual representation F_s) \rightarrow multi-modal features
 - (Multi-modal features, 2D spatial coordinate feature) \rightarrow pixel-level visual features F_v
 - Vision-language decoder
 - Propagate fine-grained semantic information from textual features to pixel-level visual features
 - Multi-head self-attention (MHSA) : capture global contextual information
 - Multi-head cross-attention (MHCA) : propagate fine-grained semantic information into F'_{v}

$$F'_{v} = MHSA(LN(F_{v})) + F_{v}$$

$$MHSA(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

$$F'_{c} = MHCA(LN(F'_{v}), F_{t}) + F'_{v}$$

$$F_{c} = MLP(LN(F'_{c})) + F'_{c}$$

 F_c : evolved multi-modal feature

- CLIP-Driven Referring Segmentation : [1] CRIS
 - Text-to-pixel contrastive learning
 - Two projectors transform F_c and F_s into the same feature dimension $\rightarrow z_v^{N \times D}$, z_t^D
 - Use text-to-pixel contrastive loss

Statistic Align text features and the corresponding pixel-level features

SE Distinguish irrelevant pixel-level features in the multi-modal embedding space

$$L_{con}^{i}(z_{t}, z_{v}^{i}) = \begin{cases} -\log(\sigma(z_{t} \cdot z_{v}^{i})) & i \in P \\ -\log(1 - \sigma(z_{t} \cdot z_{v}^{i})) & i \in N \end{cases}$$
$$L_{con}(z_{t}, z_{v}) = \frac{1}{|P \cup N|} \sum_{i \in P \cup N} L_{con}^{i}(z_{t}, z_{v}^{i})$$

Final segmentation results = $\sigma(z_t \cdot z_v)$

- CLIP-Driven Referring Segmentation : ^[1] CRIS
 - Results

Dataset	Con.	Dec.	n	IoU	Pr@50	Pr@60	Pr@70	Pr@80	Pr@90
RefCOCO	-	-	-	62.66	72.55	67.29	59.53	43.52	12.72
	\checkmark	-	-	64.64	74.89	69.58	61.70	45.50	13.31
	-	\checkmark	1	66.31	77.66	72.99	65.67	48.43	14.81
	\checkmark	\checkmark	1	68.66	80.16	75.72	68.82	51.98	15.94
	 ✓ 	\checkmark	2	69.13	80.96	76.60	69.67	52.23	16.09
	\checkmark	\checkmark	3	69.52	81.35	77.54	70.79	52.65	16.21
	\checkmark	\checkmark	4	69.18	80.99	76.74	69.32	52.57	16.37
RefCOCO+	-	-	-	50.17	54.55	47.69	40.19	28.75	8.21
	 ✓ 	-	-	53.15	58.28	53.74	46.67	34.01	9.30
	-	\checkmark	1	54.73	63.31	58.89	52.46	38.53	11.70
	 ✓ 	\checkmark	1	59.97	69.19	64.85	58.17	43.47	13.39
	\checkmark	\checkmark	2	60.75	70.69	66.83	60.74	45.69	13.42
	✓	\checkmark	3	61.39	71.46	67.82	61.80	47.00	15.02
	\checkmark	\checkmark	4	61.15	71.05	66.94	61.25	46.98	14.97
G-Ref	-	-	-	49.24	53.33	45.49	36.58	23.90	6.92
	 ✓ 	-	-	52.67	59.27	52.45	44.12	29.53	8.80
	-	\checkmark	1	51.46	58.68	53.33	45.61	31.78	10.23
	 ✓ 	\checkmark	1	57.82	66.28	60.99	53.21	38.58	13.38
	 ✓ 	\checkmark	2	58.40	67.30	61.72	54.70	39.67	13.40
	✓	\checkmark	3	59.35	68.93	63.66	55.45	40.67	14.40
	\checkmark	\checkmark	4	58.79	67.91	63.11	55.43	39.81	13.48

	-	1.5.1.0	1					1	
RMI* [25]	ResNet-101	45.18	45.69	45.57	29.86	30.48	29.50	-	-
DMN [33]	ResNet-101	49.78	54.83	45.13	38.88	44.22	32.29	-	-
RRN* [22]	ResNet-101	55.33	57.26	53.95	39.75	42.15	36.11	-	-
MAttNet [50]	ResNet-101	56.51	62.37	51.70	46.67	52.39	40.08	47.64	48.61
NMTree [26]	ResNet-101	56.59	63.02	52.06	47.40	53.01	41.56	46.59	47.88
CMSA* [49]	ResNet-101	58.32	60.61	55.09	43.76	47.60	37.89	-	-
Lang2Seg [5]	ResNet-101	58.90	61.77	53.81	-	-	-	46.37	46.95
BCAN* [16]	ResNet-101	61.35	63.37	59.57	48.57	52.87	42.13	-	-
CMPC* [17]	ResNet-101	61.36	64.53	59.64	49.56	53.44	43.23	-	-
LSCM* [18]	ResNet-101	61.47	64.99	59.55	49.34	53.12	43.50	-	-
MCN [30]	DarkNet-53	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40
CGAN [29]	DarkNet-53	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69
EFNet [8]	ResNet-101	62.76	65.69	59.67	51.50	55.24	43.01	-	-
LTS [19]	DarkNet-53	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25
VLT [6]	DarkNet-53	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65
CRIS (Ours)	ResNet-50	69.52	72.72	64.70	61.39	67.10	52.48	59.35	59.39
CRIS (Ours)	ResNet-101	70.47	73.18	66.10	62.27	68.08	53.68	59.87	60.36

RefCOCO

test A

test B

val

val

< Ablation studies >

< Experiments >

G-Ref

test

val

RefCOCO+

test A

test B

Method

Backbone

- CLIP-Driven Referring Segmentation : ^[1] CRIS
 - Results

Language: "man left cut off"

- CLIP-Driven Manipulation : ^[1] CLIP-NeRF
 - Conditional NeRF
 - Generative model for a particular object category
 - Conditioned on the latent vectors that dedicatedly control shape and appearance
 - Suffer from mutual intervention between shape and appearance conditions
 - Disentangled conditional NeRF
 - Individual control over both shape and appearance

Still Using CLIP similarity loss for shape mapper and appearance mapper

- CLIP-Driven Manipulation : ^[1] CLIP-NeRF
 - Training disentangled conditional NeRF
 - Inputs : position, view direction, shape code, appearance code
 - Outputs : density, color
 - Shape deformation network : (position p(x, y, z), shape code z_s) \rightarrow displacement vectors Δp
 - MLP network

sis manipulating the appearance without touching the shape information (density)

- CLIP-Driven Manipulation : ^[1] CLIP-NeRF
 - Training mappers
 - Take a feed-forward approach to directly update the condition displacement vectors from the input condition
 - Freeze : generator, discriminator, CLIP encoder
 - Maximize the embedding similarity between a rendered image patch and the input condition

$$z'_{s} = M_{s} \left(\hat{\varepsilon}_{t}(t) \right) + z_{s}, \quad z'_{a} = M_{a} \left(\hat{\varepsilon}_{t}(t) \right) + z_{a} \qquad Loss_{CLIP} = 1 - \langle \hat{\varepsilon}_{i}(l), \hat{\varepsilon}_{t}(t) \rangle$$

- CLIP-Driven Manipulation : ^[1] CLIP-NeRF
 - CLIP model can support view-consistency representations for 3D-aware applications

- More sensitive to small object difference than large view variations

Stature is stable across different viewpoints

✓ Different views for a same object have higher similarity (small distance)

St CLIP can distinguish object differences

✓ Different objects have lower similarity (large distance) even in an identical view

- CLIP-Driven Manipulation : ^[1] CLIP-NeRF
 - Ablation study for disentanglement

• CLIP-Driven Manipulation : ^[1] CLIP-NeRF

- CLIP-Driven Manipulation : ^[1] CLIP-NeRF
 - Scaling along editing direction

Conclusion

- CLIP-Driven Referring Segmentation : [1] CRIS
 - Text-to-pixel contrastive learning

- Enforce the text feature similar to the related pixel-level features and dissimilar to the irrelevances

- CLIP-Driven Manipulation : ^[2] CLIP-NeRF
 - Design two code mappers that take a CLIP embedding as input and update the latent codes to reflect the targeted editing

- Trained with a CLIP-based matching loss to ensure the manipulation accuracy

