#### 2022 하계 세미나 Stereo Super Resolution



Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering



Presented by 조영수

# Outline

- Introduction
  - Stereo Super Resolution
  - PAM (Pallax-attention Module) and epipolar line
- Method
  - PAM

- Symmetric Parallax Attention for Stereo Image Super-Resolution (CVPRW 2021)

Cross-Attention module

- NAFSSR: Stereo Image Super-Resolution Using NAFNet (CVPR 2022 Oral)

- Results
- Conclusion





### Introduction

- Super Resolution
  - Restore High-Resolution (HR) image from Low-Resolution (LR) image
  - Ill-posed problem
    - Multiple solution could be obtained from a pixel of low-resolution image
  - According to the number of LR image
    - SISR (Single Image Super Resolution) / MISR (Multi Image Super Resolution)



Super Resolution



Figure 1: Example of Single Image Super Resolution





#### Introduction

- Stereo Super Resolution
  - Commonly used
    - Mobile phones and autonomous vehicles
  - Image SR and HR depth estimation
    - Jointly estimate the SR image and HR disparity
    - StereoSR limited with the large disparity variations



Figure 2: Example of dual camers





• Parallax-attention Module (PAM)



Figure 3: Overview of PASSRnet network





- Parallax-attention Module (PAM)
  - Inspired by self-attention mechanism
  - Capture global correspondence
- Parallax-attention Mechanism
  - Attention map
    - Query feature map, Q and S generated
    - produce parallax attention map  $M_{B \rightarrow A}$
  - Valid mask
    - $M_{A \to B}$  able to generated when  $M_{B \to A}$



Figure 4: Parallax-attention module





- Parallax-attention Module (PAM)
  - Focus on the most similar feature along the epipolar line
    - Rather than collecting all similar features
  - Parallax-attention map
    - Reflect the correspondence between stereo pairs
    - Encode disparity information



Figure 5: Parallax-attention and self-attention



Figure 6: Parallax-attention maps  $M_{right \rightarrow left}$ 



- Epipolar geometry
  - The geometrical relationship between correspondences of image A and B
    - Images of same object or scene acquired from two different points
  - Epipolar line
    - The straight line of intersection of the epipolar plane with the image plane
    - Efficient for 1 D matching



Figure 7: Epipolar Geometry





- Left-right Consistency
  - Obtained if PAM captures accurate correspondence

$$\begin{cases} I_{left}^{L} = M_{right \to left} \otimes I_{right}^{L} \\ I_{right}^{L} = M_{left \to right} \otimes I_{left}^{L} \end{cases}$$

• Cycle consistency

$$\begin{bmatrix} I_{left}^{L} = M_{left \rightarrow right \rightarrow left} \otimes I_{right}^{L} \\ I_{right}^{L} = M_{right \rightarrow left \rightarrow right} \otimes I_{left}^{L} \end{bmatrix}$$

Cycle-attention map

$$\begin{cases} M_{left \rightarrow right \rightarrow left} = M_{right \rightarrow left} \otimes M_{left \rightarrow right} \\ M_{right \rightarrow left \rightarrow right} = M_{left \rightarrow right} \otimes M_{right \rightarrow left} \end{cases}$$





- Valid masks
  - Occlusion detection method
    - Occluded regions represented with small weights

sis since occluded pixels in the left image not found their correspondence in the right image

- Guide feature fusion
  - Occluded regions in the left image not able to obtain additional information from the right image

$$V_{left \rightarrow righ}(i,j) = \begin{cases} 1, & if \sum_{k \in [1,W]} M_{left \rightarrow right}(i,k,k) > \tau \\ 0, & otherwise \end{cases}$$





### iPASSR[3]

- Contributions
  - 1. Exploit symmetric cues for stereo image SR
  - 2. A symmetric and bi-directional parallax attention module



Figure 8: An overview of iPASSR network





- Methods
  - Feature Extraction
    - Features from all the layers concatenated and fed to a 1x1 convolution
      - Sig Generate fused features for local residual connection



Figure 9: Feature extraction



#### Figure 10: Residual Dense Block





- Cross-view interaction
  - Generated  $F_U$ ,  $F_V$  with the input stereo features



Figure 11: Whitening procedure

- Batch-normalization (BN) layer, transition residual block, and separately fed to a 1x1 convolution
- Whiten layer
  - Obtain normalized features  $F'_U$ ,  $F'_V$

$$\mathbf{F}_{\mathrm{U}}'(h, w, c) = \mathbf{F}_{\mathrm{U}}(h, w, c) - \frac{1}{W} \sum_{i=1}^{W} \mathbf{F}_{\mathrm{U}}(h, i, c),$$
$$\mathbf{F}_{\mathrm{V}}'(h, w, c) = \mathbf{F}_{\mathrm{V}}(h, w, c) - \frac{1}{W} \sum_{i=1}^{W} \mathbf{F}_{\mathrm{V}}(h, i, c).$$

- Attention map
  - Initial score map S produced
    - $\lesssim F'_V$  transposed then batch-wise multiplied with  $F'_U$
  - Attention maps  $M_{R \to L}, M_{L \to R}$ 
    - $\lesssim$  Softmax normalization applied to S and S<sup>T</sup>





- Cross-view interaction
  - Achieved cross-view interaction
    - Batch-wise multiplication with the corresponding attention maps

$$\begin{split} \mathbf{F'}_{R \to L} &= \mathbf{M}_{R \to L} \otimes \mathbf{F}_{R}, \\ \mathbf{F'}_{L \to R} &= \mathbf{M}_{L \to R} \otimes \mathbf{F}_{L}, \end{split}$$

- Inline occlusion handling scheme
  - Avoid unreliable correspondence in occlusion and boundary regions
    - Calculate valid masks  $V_L$  and  $V_R$
    - Final converted features  $F_{L \to R}$ ,  $F_{R \to L}$

$$\mathbf{F}_{R \rightarrow L} = \mathbf{V}_L \odot \mathbf{F'}_{R \rightarrow L} + (\mathbf{1} - \mathbf{V}_L) \odot \mathbf{F}_L,$$

$$\mathbf{F}_{L \rightarrow R} = \mathbf{V}_R \odot \mathbf{F'}_{L \rightarrow R} + (\mathbf{1} - \mathbf{V}_R) \odot \mathbf{F}_R,$$





- Reconstruction
  - Similar to the feature extraction
    - Residual dense block (RDB) as the basic block
    - Combination of RDBs , Channel Attention (CA), and sup-pixel layer to generate super-resolved image



Figure 12: Reconstruction





- Inline Occlusion Handling Scheme
  - Occlusion derived
    - By checking the stereo consistency using the attention maps
  - Toy example
    - How occlusion implicitly encoded in the parallax attention maps



Figure 12: Reconstruction





- Inline Occlusion Handling Scheme
  - $P_L(h, w_1)$  represent the possibility

-  $I_L(h, w_1)$  converted to  $I_R$  and re-converted to  $I_L(h, w_1)$ 

$$\mathbf{P}_{\mathsf{L}}(h, w_1) = \sum_{w_2=1}^{W} \mathbf{M}_{\mathsf{R} \to \mathsf{L}}(h, w_1, w_2) \cdot \mathbf{M}_{\mathsf{L} \to \mathsf{R}}(h, w_2, w_1).$$

Valid masks

$$V_L = \tanh(\tau P'_L), \quad for \ left \ valid \ mask$$



Figure 13: An illustration of valid masks





- Total Losses
  - SR, residual photometric, residual cycle, smoothness, and residual stereo consistency losses

$$\mathcal{L} = \mathcal{L}_{SR} + \lambda (\mathcal{L}_{photo}^{res} + \mathcal{L}_{cycle}^{res} + \mathcal{L}_{smooth} + \mathcal{L}_{cons}^{res})$$

SR losses

- L1 distance between the SR and GT stereo images

$$\mathcal{L}_{SR} = \parallel \mathbf{I}_{L}^{SR} - \mathbf{I}_{L}^{HR} \parallel_{1} + \parallel \mathbf{I}_{R}^{SR} - \mathbf{I}_{R}^{HR} \parallel_{1}$$

- Residual photometric & cycle losses
  - Illuminance intensity vary significantly
    - Exposure difference and non-Lambertain surfaces
  - Used residual images to improve the robustness

$$X_{L} = \left| I_{L}^{HR} - I_{L}^{IR} \uparrow \right|_{\downarrow}, \qquad X_{R} = \left| I_{R}^{HR} - I_{R}^{IR} \uparrow \right|_{\downarrow}$$

–  $X_L$  and  $X_R$  represent the absolute values of the left and right residual images





- Residual photometric and cycle losses
  - Benefits
    - More consistent and illuminance-robust stereo correspondence
    - Pay more attention to texture-rich regions

$$\begin{split} \mathcal{L}_{\text{photo}}^{\text{res}} = & \| V_{\text{L}} \odot \left( \mathbf{X}_{\text{L}} - \mathbf{M}_{\text{R} \rightarrow \text{L}} \otimes \mathbf{X}_{\text{R}} \right) \|_{1} \\ & + \| V_{\text{R}} \odot \left( \mathbf{X}_{\text{R}} - \mathbf{M}_{\text{L} \rightarrow \text{R}} \otimes \mathbf{X}_{\text{L}} \right) \|_{1}, \\ \mathcal{L}_{\text{cycle}}^{\text{res}} = & \| V_{\text{L}} \odot \left( \mathbf{X}_{\text{L}} - \mathbf{M}_{\text{R} \rightarrow \text{L}} \otimes \mathbf{M}_{\text{L} \rightarrow \text{R}} \otimes \mathbf{X}_{\text{L}} \right) \|_{1} \\ & + \| V_{\text{R}} \odot \left( \mathbf{X}_{\text{R}} - \mathbf{M}_{\text{L} \rightarrow \text{R}} \otimes \mathbf{M}_{\text{R} \rightarrow \text{L}} \otimes \mathbf{X}_{\text{R}} \right) \|_{1} \end{split}$$





- Smoothness loss
  - Encourage smoothness in correspondence space

$$\mathcal{L}_{\text{smooth}} = \sum_{\mathbf{M}} \sum_{i,j,k} (\| \mathbf{M}(i,j,k) - \mathbf{M}(i+1,j,k) \|_1 + \| \mathbf{M}(i,j,k) - \mathbf{M}(i,j+1,k+1) \|_1),$$

- Residual stereo consistency loss
  - LR residuals between super-resolved images and ground truth images

$$Y_{L} = \left| I_{L}^{HR} - I_{L}^{SR} \right|_{\downarrow'} \qquad X_{R} = \left| I_{R}^{HR} - I_{R}^{SR} \right|_{\downarrow}$$

$$\mathcal{L}_{\text{cons}}^{\text{res}} = \parallel V_{\text{L}} \odot (\mathbf{Y}_{\text{L}} - \mathbf{M}_{\text{R} \to \text{L}} \otimes \mathbf{Y}_{\text{R}}) \parallel_{1} \\ + \parallel V_{\text{R}} \odot (\mathbf{Y}_{\text{R}} - \mathbf{M}_{\text{L} \to \text{R}} \otimes \mathbf{Y}_{\text{L}}) \parallel_{1} .$$





#### • Qualitative results

| Method         | Scale | #Params. | Left         |              |              | (Left + Right)/2 |              |              |              |
|----------------|-------|----------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|
|                |       |          | KITTI 2012   | KITTI 2015   | Middlebury   | KITTI 2012       | KITTI 2015   | Middlebury   | Flickr1024   |
| Bicubic        | 2×    |          | 28.44/0.8808 | 27.81/0.8814 | 30.46/0.8979 | 28.51/0.8842     | 28.61/0.8973 | 30.60/0.8990 | 24.94/0.8186 |
| VDSR [8]       | 2×    | 0.66M    | 30.17/0.9062 | 28.99/0.9038 | 32.66/0.9101 | 30.30/0.9089     | 29.78/0.9150 | 32.77/0.9102 | 25.60/0.8534 |
| EDSR [12]      | 2×    | 38.6M    | 30.83/0.9199 | 29.94/0.9231 | 34.84/0.9489 | 30.96/0.9228     | 30.73/0.9335 | 34.95/0.9492 | 28.66/0.9087 |
| RDN [38]       | 2×    | 22.0M    | 30.81/0.9197 | 29.91/0.9224 | 34.85/0.9488 | 30.94/0.9227     | 30.70/0.9330 | 34.94/0.9491 | 28.64/0.9084 |
| RCAN [36]      | 2×    | 15.3M    | 30.88/0.9202 | 29.97/0.9231 | 34.80/0.9482 | 31.02/0.9232     | 30.77/0.9336 | 34.90/0.9486 | 28.63/0.9082 |
| StereoSR [6]   | 2×    | 1.08M    | 29.42/0.9040 | 28.53/0.9038 | 33.15/0.9343 | 29.51/0.9073     | 29.33/0.9168 | 33.23/0.9348 | 25.96/0.8599 |
| PASSRnet [25]  | 2×    | 1.37M    | 30.68/0.9159 | 29.81/0.9191 | 34.13/0.9421 | 30.81/0.9190     | 30.60/0.9300 | 34.23/0.9422 | 28.38/0.9038 |
| iPASSR (ours)  | 2×    | 1.37M    | 30.97/0.9210 | 30.01/0.9234 | 34.41/0.9454 | 31.11/0.9240     | 30.81/0.9340 | 34.51/0.9454 | 28.60/0.9097 |
| Bicubic        | 4×    | —        | 24.52/0.7310 | 23.79/0.7072 | 26.27/0.7553 | 24.58/0.7372     | 24.38/0.7340 | 26.40/0.7572 | 21.82/0.6293 |
| VDSR [8]       | 4×    | 0.66M    | 25.54/0.7662 | 24.68/0.7456 | 27.60/0.7933 | 25.60/0.7722     | 25.32/0.7703 | 27.69/0.7941 | 22.46/0.6718 |
| EDSR [12]      | 4×    | 38.9M    | 26.26/0.7954 | 25.38/0.7811 | 29.15/0.8383 | 26.35/0.8015     | 26.04/0.8039 | 29.23/0.8397 | 23.46/0.7285 |
| RDN [38]       | 4×    | 22.0M    | 26.23/0.7952 | 25.37/0.7813 | 29.15/0.8387 | 26.32/0.8014     | 26.04/0.8043 | 29.27/0.8404 | 23.47/0.7295 |
| RCAN [36]      | 4×    | 15.4M    | 26.36/0.7968 | 25.53/0.7836 | 29.20/0.8381 | 26.44/0.8029     | 26.22/0.8068 | 29.30/0.8397 | 23.48/0.7286 |
| PASSRnet       | 4×    | 1.42M    | 26.26/0.7919 | 25.41/0.7772 | 28.61/0.8232 | 26.34/0.7981     | 26.08/0.8002 | 28.72/0.8236 | 23.31/0.7195 |
| SRRes+SAM [32] | 4×    | 1.73M    | 26.35/0.7957 | 25.55/0.7825 | 28.76/0.8287 | 26.44/0.8018     | 26.22/0.8054 | 28.83/0.8290 | 23.27/0.7233 |
| iPASSR (ours)  | 4×    | 1.42M    | 26.47/0.7993 | 25.61/0.7850 | 29.07/0.8363 | 26.56/0.8053     | 26.32/0.8084 | 29.16/0.8367 | 23.44/0.7287 |

Figure 14: Quantitative results achieved by different methods





#### • Visual results



Figure 15: Visual results (4 X) achieved by different methods





#### • Visual results



Figure 16: Qualitative results achieved by GwcNet using 4xSR stereo images generated by different SR methods





# NAFSSR[4]

- Contributions
  - 1<sup>st</sup> Place in NTIRE 2022 Stereo Image Super-resolution Challenge
  - NAFSSR
    - SOTA performance with fewer parameter
    - Faster inference
    - Representation through a simple stereo crosse attention module
- Overview



Figure 17: Overall architecture of NAFSSR





#### • NAFBlock



Figure 18: Architecture of NAFBlock

- 1. Mobile convolution module (MBConv)
  - Based on point-wise and depth-wise convolution with channel attention
- 2. Feed-forward network (FFN)
  - Implemented by point-wise convolution
- Simple gate mechanism
  - Makes block nonlinear activation free
  - Replaced nonlinear activation (ReLU, GELU)

SimpleGate(X) =  $X_1 \odot X_2$ 





- Stereo Cross Attention Module (SCAM)
  - Scaled dot-Product Attention

Attention $(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax} \left( \mathbf{Q} \mathbf{K}^T / \sqrt{C} \right) \mathbf{V}$ 

- Query matrix projected by source intra-view feature
- Key, Value matrices projected by target intra-view feature
- Highly symmetric under epipolar constraint
  - Same Q and K to represent each intra-view features
  - Calculate correlation of cross-view features on horizontal line

$$\begin{split} \mathbf{F}_{\mathbf{R} \to \mathbf{L}} &= \operatorname{Attention}(\mathbf{W}_{1}^{\mathbf{L}} \bar{\mathbf{X}}_{\mathbf{L}}, \mathbf{W}_{1}^{\mathbf{R}} \bar{\mathbf{X}}_{\mathbf{R}}, \mathbf{W}_{2}^{\mathbf{R}} \mathbf{X}_{\mathbf{R}}), \\ \mathbf{F}_{\mathbf{L} \to \mathbf{R}} &= \operatorname{Attention}(\mathbf{W}_{1}^{\mathbf{R}} \bar{\mathbf{X}}_{\mathbf{R}}, \mathbf{W}_{1}^{\mathbf{L}} \bar{\mathbf{X}}_{\mathbf{L}}, \mathbf{W}_{2}^{\mathbf{L}} \mathbf{X}_{\mathbf{L}}), \end{split}$$

Fusion

$$\mathbf{F}_{\mathbf{L}} = \gamma_L \mathbf{F}_{\mathbf{R} \to \mathbf{L}} + \mathbf{X}_{\mathbf{L}},$$
$$\mathbf{F}_{\mathbf{R}} = \gamma_R \mathbf{F}_{\mathbf{L} \to \mathbf{R}} + \mathbf{X}_{\mathbf{R}},$$





Figure 19: Stereo Cross Attention Module



- Training Strategies
  - Super-Resolution
    - Train models with small patches cropped from full-resolution images
  - Data augmentation
    - Horizontally and vertically flipped
    - Channel shuffle
- Loss
  - Pixel-wise L1 distance

$$\mathcal{L} = \left\| \mathbf{I}_{\text{L}}^{\text{SR}} - \mathbf{I}_{\text{L}}^{\text{HR}} \right\|_{1} + \left\| \mathbf{I}_{\text{R}}^{\text{SR}} - \mathbf{I}_{\text{R}}^{\text{HR}} \right\|_{1}$$





- Train-test Inconsistency
  - Train: patch-based features
  - Inference: image-based features
  - For stereo super-resolution task
    - Regional range of inputs for training and inference varies greatly (patch only 4.5% of LR images)
  - Channel attention
    - Aggregate global spatial information
    - Redistributes the pooled information to input features

$$CA(\mathbf{X}) = \mathbf{X} * \mathbf{W} pool(\mathbf{X}),$$

- Apply TLSC[5]
  - Converts global average pooling to local average pooling during inference
  - Extract representations based on local spatial region of features as in training phase







(b) Test-time Local Converter (Ours)





#### • Quantitative results

| Method               | Scale      | #P     | Left         |              |              | (Left + Right)/2 |              |              |              |
|----------------------|------------|--------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|
| In the second of the |            | 11 -   | KITTI 2012   | KITTI 2015   | Middlebury   | KITTI 2012       | KITTI 2015   | Middlebury   | Flickr1024   |
| VDSR [15]            | $\times 2$ | 0.66M  | 30.17/0.9062 | 28.99/0.9038 | 32.66/0.9101 | 30.30/0.9089     | 29.78/0.9150 | 32.77/0.9102 | 25.60/0.8534 |
| EDSR [20]            | $\times 2$ | 38.6M  | 30.83/0.9199 | 29.94/0.9231 | 34.84/0.9489 | 30.96/0.9228     | 30.73/0.9335 | 34.95/0.9492 | 28.66/0.9087 |
| RDN [40]             | $\times 2$ | 22.0M  | 30.81/0.9197 | 29.91/0.9224 | 34.85/0.9488 | 30.94/0.9227     | 30.70/0.9330 | 34.94/0.9491 | 28.64/0.9084 |
| RCAN [39]            | $\times 2$ | 15.3M  | 30.88/0.9202 | 29.97/0.9231 | 34.80/0.9482 | 31.02/0.9232     | 30.77/0.9336 | 34.90/0.9486 | 28.63/0.9082 |
| StereoSR [14]        | $\times 2$ | 1.08M  | 29.42/0.9040 | 28.53/0.9038 | 33.15/0.9343 | 29.51/0.9073     | 29.33/0.9168 | 33.23/0.9348 | 25.96/0.8599 |
| PASSRnet [32]        | $\times 2$ | 1.37M  | 30.68/0.9159 | 29.81/0.9191 | 34.13/0.9421 | 30.81/0.9190     | 30.60/0.9300 | 34.23/0.9422 | 28.38/0.9038 |
| IMSSRnet [17]        | $\times 2$ | 6.84M  | 30.90/-      | 29.97/-      | 34.66/-      | 30.92/-          | 30.66/-      | 34.67/-      | -/-          |
| iPASSR [34]          | $\times 2$ | 1.37M  | 30.97/0.9210 | 30.01/0.9234 | 34.41/0.9454 | 31.11/0.9240     | 30.81/0.9340 | 34.51/0.9454 | 28.60/0.9097 |
| SSRDE-FNet [4]       | $\times 2$ | 2.10M  | 31.08/0.9224 | 30.10/0.9245 | 35.02/0.9508 | 31.23/0.9254     | 30.90/0.9352 | 35.09/0.9511 | 28.85/0.9132 |
| NAFSSR-T (Ours)      | $\times 2$ | 0.45M  | 31.12/0.9224 | 30.19/0.9253 | 34.93/0.9495 | 31.26/0.9254     | 30.99/0.9355 | 35.01/0.9495 | 28.94/0.9128 |
| NAFSSR-S (Ours)      | $\times 2$ | 1.54M  | 31.23/0.9236 | 30.28/0.9266 | 35.23/0.9515 | 31.38/0.9266     | 31.08/0.9367 | 35.30/0.9514 | 29.19/0.9160 |
| NAFSSR-B (Ours)      | $\times 2$ | 6.77M  | 31.40/0.9254 | 30.42/0.9282 | 35.62/0.9545 | 31.55/0.9283     | 31.22/0.9380 | 35.68/0.9544 | 29.54/0.9204 |
| NAFSSR-L (Ours)      | $\times 2$ | 23.79M | 31.45/0.9261 | 30.46/0.9289 | 35.83/0.9559 | 31.60/0.9291     | 31.25/0.9386 | 35.88/0.9557 | 29.68/0.9221 |
| VDSR [15]            | ×4         | 0.66M  | 25.54/0.7662 | 24.68/0.7456 | 27.60/0.7933 | 25.60/0.7722     | 25.32/0.7703 | 27.69/0.7941 | 22.46/0.6718 |
| EDSR [20]            | $\times 4$ | 38.9M  | 26.26/0.7954 | 25.38/0.7811 | 29.15/0.8383 | 26.35/0.8015     | 26.04/0.8039 | 29.23/0.8397 | 23.46/0.7285 |
| RDN [40]             | $\times 4$ | 22.0M  | 26.23/0.7952 | 25.37/0.7813 | 29.15/0.8387 | 26.32/0.8014     | 26.04/0.8043 | 29.27/0.8404 | 23.47/0.7295 |
| RCAN [39]            | $\times 4$ | 15.4M  | 26.36/0.7968 | 25.53/0.7836 | 29.20/0.8381 | 26.44/0.8029     | 26.22/0.8068 | 29.30/0.8397 | 23.48/0.7286 |
| StereoSR [14]        | $\times 4$ | 1.42M  | 24.49/0.7502 | 23.67/0.7273 | 27.70/0.8036 | 24.53/0.7555     | 24.21/0.7511 | 27.64/0.8022 | 21.70/0.6460 |
| PASSRnet [32]        | $\times 4$ | 1.42M  | 26.26/0.7919 | 25.41/0.7772 | 28.61/0.8232 | 26.34/0.7981     | 26.08/0.8002 | 28.72/0.8236 | 23.31/0.7195 |
| SRRes+SAM [38]       | $\times 4$ | 1.73M  | 26.35/0.7957 | 25.55/0.7825 | 28.76/0.8287 | 26.44/0.8018     | 26.22/0.8054 | 28.83/0.8290 | 23.27/0.7233 |
| IMSSRnet [17]        | $\times 4$ | 6.89M  | 26.44/-      | 25.59/-      | 29.02/-      | 26.43/-          | 26.20/-      | 29.02/-      | -/-          |
| iPASSR [34]          | $\times 4$ | 1.42M  | 26.47/0.7993 | 25.61/0.7850 | 29.07/0.8363 | 26.56/0.8053     | 26.32/0.8084 | 29.16/0.8367 | 23.44/0.7287 |
| SSRDE-FNet [4]       | $\times 4$ | 2.24M  | 26.61/0.8028 | 25.74/0.7884 | 29.29/0.8407 | 26.70/0.8082     | 26.43/0.8118 | 29.38/0.8411 | 23.59/0.7352 |
| NAFSSR-T (Ours)      | ×4         | 0.46M  | 26.69/0.8045 | 25.90/0.7930 | 29.22/0.8403 | 26.79/0.8105     | 26.62/0.8159 | 29.32/0.8409 | 23.69/0.7384 |
| NAFSSR-S (Ours)      | $\times 4$ | 1.56M  | 26.84/0.8086 | 26.03/0.7978 | 29.62/0.8482 | 26.93/0.8145     | 26.76/0.8203 | 29.72/0.8490 | 23.88/0.7468 |
| NAFSSR-B (Ours)      | $\times 4$ | 6.80M  | 26.99/0.8121 | 26.17/0.8020 | 29.94/0.8561 | 27.08/0.8181     | 26.91/0.8245 | 30.04/0.8568 | 24.07/0.7551 |
| NAFSSR-L (Ours)      | $\times 4$ | 23.83M | 27.04/0.8135 | 26.22/0.8034 | 30.11/0.8601 | 27.12/0.8194     | 26.96/0.8257 | 30.20/0.8605 | 24.17/0.7589 |

Figure 21: Quantitative results achieved by different methods





#### • Visual results



Figure 23: Visual results achieved by different methods





• Visual results



Figure 23: Visual results achieved by different methods





# Conclusion

- Stereo Super Resolution task
  - Super resolution task + stereo matching task
  - The cross-view information important for performance
- iPASSR
  - A bi-directional parallax attention module (biPAM)
  - An inline occlusion handling scheme
  - Residual losses to achieve robustness to illuminance changes
- NAFSSR
  - NAFBlcok for intra-view feature extraction
  - Stereo cross attention (SCAM) for cross-view feature
  - Solve the train-test inconsistency





# 감사합니다

