Real-time object detection

August 12, 2022

Sogang University

Vision & Display Systems Lab, Dept. of Electronic Engineering

Outline

- Background
 - Object detection
- Papers
 - YOLOX: Exceeding YOLO Series in 2021
 - Real-time Object Detection for Streaming Perception (CVPR 2022)

Background

- Object detection
 - Detecting specific objects that are significant within images and videos
 - -Localization : find where the object exists
 - -Classification: determine what objects exist in the local
- Real-time object detection
 - Real-time detection with fast processing speed, giving up a bit of accuracy
 - -2-Stage Detector: regional proposal, classification \rightarrow sequential (R-CNN, Faster R-CNN)
 - 1-Stage Detector: regional proposal, classification → simultaneously (YOLO, SSD)

Classification

CAT

Object Detection

CAT, DOG, DUCK

YOLOX: Exceeding YOLO Series in 2021

- Stream Perception Challenge (Workshop on Autonomous Driving at CVPR 2021)
 - Architecture
 - Anchor-free detection
 - Decoupled head
 - Multi-positive

Architecture

- Structure
 - DarkNet53 (backbone, YOLOv3) → extract feature map
 - SPP (Spatial Pyramid Pooling layer)
 - -Network with multiple layers of pooling
 - FPN (Feature Pyramid Network)
 - Add high level extraction information to row level feature map
 - Dense prediction
 - -Classification, regression, objectness

- Anchor-free detection
 - Anchor (YOLOv2-v5)
 - -Settings for creating bounding box

- -특정 cell에서 regression 진행 IoU threshod이상이면 해당 anchor box는 positive
- Anchor-free (YOLOX)
 - -Ground Truth 안에 cell들이 모두 positive sample
 - -해당점에서 GT까지의 길이를 학습 → bounding box 생성

- Decoupled head
 - Classification and bounding box Regression have different characteristics
 - -Classification : FC Head
 - -Localization : Convolution Head

- Multi-positive
 - Center-ness
 - If the Object label is unclear, only the center cell is set to positive among all cells in each area
 - Multi-positive
 - Sin this paper, some cells around the center are set to positive
 - SimOTA
 - -Select only cells with low loss (top-k) \rightarrow positive

- Strong augmentation
 - Mosaic
 - -Augmentation Techniques for Making Four Images into One Sheet -> detect small object
 - MixUP

니강대학교

SOGANG UNIVERSITY

-Training image and label interpolation - Apply train data and label respectively to learn

<Mosaic>

(1,0)

(0,1)

(0.5, 0.5) <Mixup>

Experiments

• Quantitative results

Method	Backbone	Size	FPS (V100)	AP (%)	AP 50	AP ₇₅	AP _S	\mathbf{AP}_M	AP _L
YOLOv3 + ASFF* [18]	Darknet-53	608	45.5	42.4	63.0	47.4	25.5	45.7	52.3
YOLOv3 + ASFF* [18]	Darknet-53	800	29.4	43.9	64.1	49.2	27.0	46.6	53.4
EfficientDet-D0 [28]	Efficient-B0	512	98.0	33.8	52.2	35.8	12.0	38.3	51.2
EfficientDet-D1 [28]	Efficient-B1	640	74.1	39.6	58.6	42.3	17.9	44.3	56.0
EfficientDet-D2 [28]	Efficient-B2	768	56.5	43.0	62.3	46.2	22.5	47.0	58.4
EfficientDet-D3 [28]	Efficient-B3	896	34.5	45.8	65.0	49.3	26.6	49.4	59.8
PP-YOLOv2 [11]	ResNet50-vd-dcn	640	68.9	49.5	68.2	54.4	30.7	52.9	61.2
PP-YOLOv2 [11]	ResNet101-vd-dcn	640	50.3	50.3	69.0	55.3	31.6	53.9	62.4
YOLOv4 [1]	CSPDarknet-53	608	62.0	43.5	65.7	47.3	26.7	46.7	53.3
YOLOv4-CSP [30]	Modified CSP	640	73.0	47.5	66.2	51.7	28.2	51.2	59.8
YOLOv3-ultralytics ²	Darknet-53	640	95.2	44.3	64.6	-	-	-	
YOLOv5-M [7]	Modified CSP v5	640	90.1	44.5	63.1	-	-	-	-
YOLOv5-L [7]	Modified CSP v5	640	73.0	48.2	66.9	-	-	-	-
YOLOv5-X [7]	Modified CSP v5	640	62.5	50.4	68.8	-		-	-
YOLOX-DarkNet53	Darknet-53	640	90.1	47.4	67.3	52.1	27.5	51.5	60.9
YOLOX-M	Modified CSP v5	640	81.3	46.4	65.4	50.6	26.3	51.0	59.9
YOLOX-L	Modified CSP v5	640	69.0	50.0	68.5	54.5	29.8	54.5	64.4
YOLOX-X	Modified CSP v5	640	57.8	51.2	69.6	55.7	31.2	56.1	66.1

Real-time Object Detection for Streaming Perception (CVPR 2022)

- Streaming perception task
 - Take the model processing latency into account
 - -Consider the online processing latency
 - Predict future results on the online setting

- Training
 - Pipeline
 - -Use YOLO-X as base detector
 - Signation Remove TensorRT and change the input scale to the half resolution
 - Rebuild the training dataset : triplet (F_{t-1}, F_t, G_{t+1})
 - To know the moving status \rightarrow to predict the detection results of the next frame

Frame t

Frame t+1

Dual-Flow Perception Module (DFP) + Trend-Aware Loss (TAL)

- To better capture the moving trend between two input frames

SOGANG UNIVERSITY

- Dual-Flow Perception Module (DFP)
 - Dynamic flow
 - -Fuse the FPN feature of two adjacent frames to learn the moving information
 - Shared weight reduces the channel to half numbers
 - Sconcatenate two reduced features to generate dynamic features

- Dual-Flow Perception Module (DFP)
 - Static flow

SOGANG UNIVERSITY

- Add the original feature of the current frame through a residual connection
 - SProvide the basic information for detection
 - Signature the predicting robustness across different moving speeds

- Trend-Aware Loss (TAL)
 - Adaptive weight for each object (different size, moving states)
 - -Pay more attention to fast-moving objects
 - Define trend factor
 - -Calculate IoU { F_{t-1}, F_t } + max operation \rightarrow mIoU

The small value of the matching IoU means the fast-moving speed

::: If a new object comes \rightarrow matching IoU is much smaller \rightarrow threshold τ

$$mIoU_{i} = \max_{j} (\{IoU(box_{i}^{t+1}, box_{j}^{t})\})$$
$$\omega_{i} = \begin{cases} 1/mIoU_{i} & mIoU_{i} \ge \tau\\ 1/\nu & mIoU_{i} < \tau \end{cases}$$

$$\mathcal{L}_{total} = \sum_{i \in positive} \hat{\omega}_i \mathcal{L}_i^{reg} + \mathcal{L}_{cls} + \mathcal{L}_{obj}$$

• Inference

- Feature buffer
 - -Store all the feature maps of previous frame
 - Duplicate the FPN feature maps as pseudo historical buffers (beginning frame F0)

Experiments

• Quantitative results

Model	Pipe.	DFP	TAL	Off AP	sAP	$ sAP_{50} $	sAP_{75}
YOLOX-S					26.3	48.1	24.0
	\checkmark				27.6 \uparrow 1.3	48.3	26.1
	\checkmark	\checkmark		32.0	28.2 (+0.6)	49.4	27.4
	\checkmark		\checkmark		28.1 (+0.5)	49.1	27.0
	 ✓ 	\checkmark	\checkmark		28.8 (+1.2)	50.3	27.6
YOLOX-M					29.2	51.9	27.7
	\checkmark				31.2 $_{\uparrow 2.0}$	51.1	31.9
	 ✓ 	\checkmark		34.5	32.3 (+1.1)	52.9	32.5
	\checkmark		\checkmark		31.8 (+0.6)	53.1	31.8
	\checkmark	\checkmark	\checkmark		32.9 (+1.7)	54.0	32.5
YOLOX-L					31.2	54.8	29.5
	\checkmark				34.2 $_{\uparrow 3.0}$	54.6	34.9
	\checkmark	\checkmark		38.3	35.5 (+1.3)	56.4	35.3
	 ✓ 		\checkmark		35.1 (+0.9)	55.5	35.6
	 ✓ 	\checkmark	\checkmark		36.1 (+1.9)	57.6	35.6

Experiments

• Visualization results

Thank you!

