

Active Learning

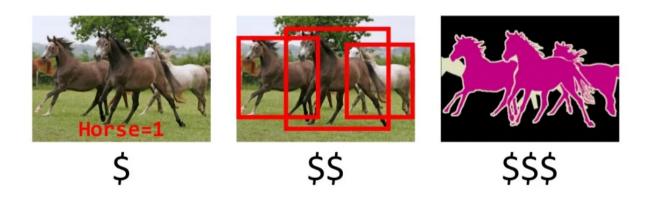
Junho Park Vision and Display Systems Lab. Sogang University

Outline

- 1. Motivation
- 2. About Active Learning
- 3. Recent Work
- 4. For Hand Pose Estimation
- 5. Conclusion
- 6. References

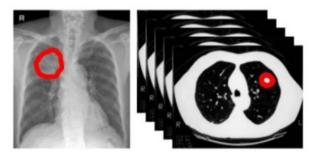
Motivation

- Success of Supervised Learning
 - A large number of learnable parameters
 - Availability for large-scale annotated data
- Limitations
 - Annotating requires a lot of effort
 - Expensive
 - Time-consuming



Motivation

- Success of Supervised Learning
 - A large number of learnable parameters
 - Availability for large-scale annotated data
- Limitations
 - Annotating requires a lot of effort
 - Expensive
 - Time-consuming

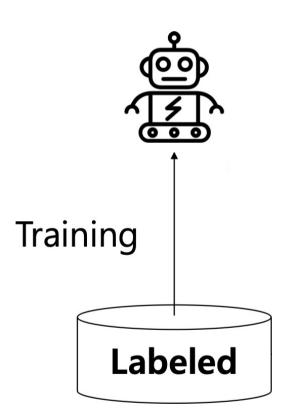


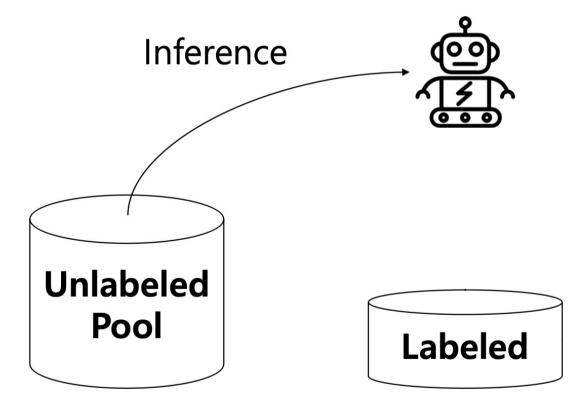
\$\$\$\$\$

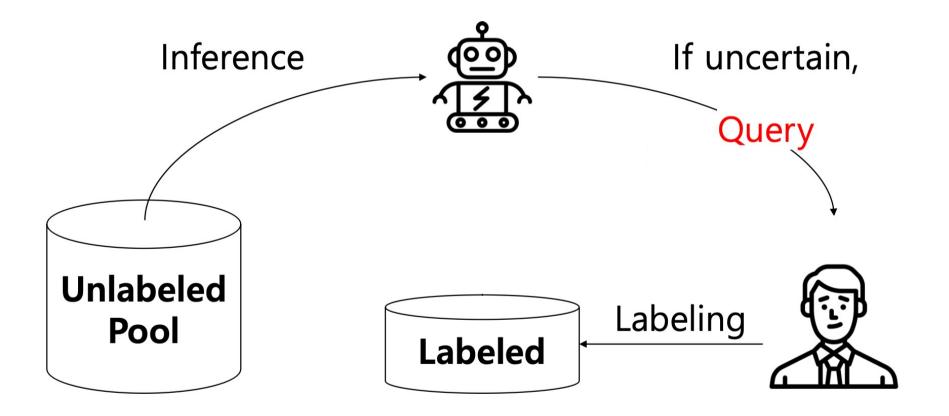
Motivation

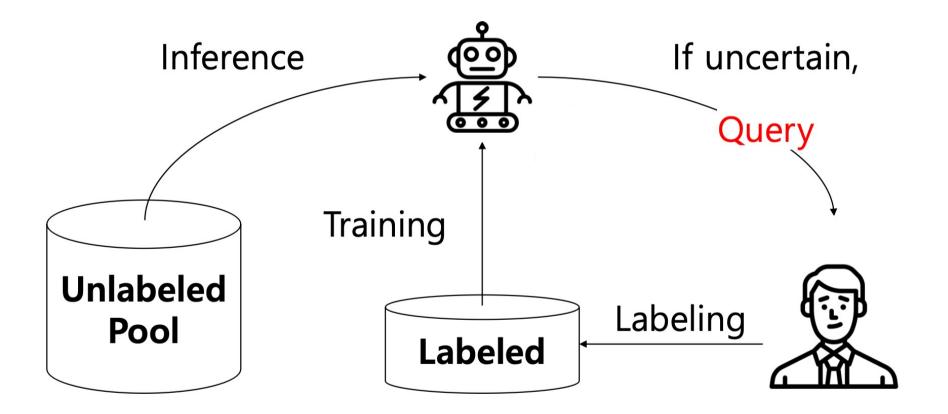
- Success of Supervised Learning
 - A large number of learnable parameters
 - Availability for large-scale annotated data
- Limitations
 - Annotating requires a lot of effort
 - Expensive
 - Time-consuming
- Solution
 - Identify the most influencing and discriminative examples to annotate.
 - Efficiently select the most meaningful samples.

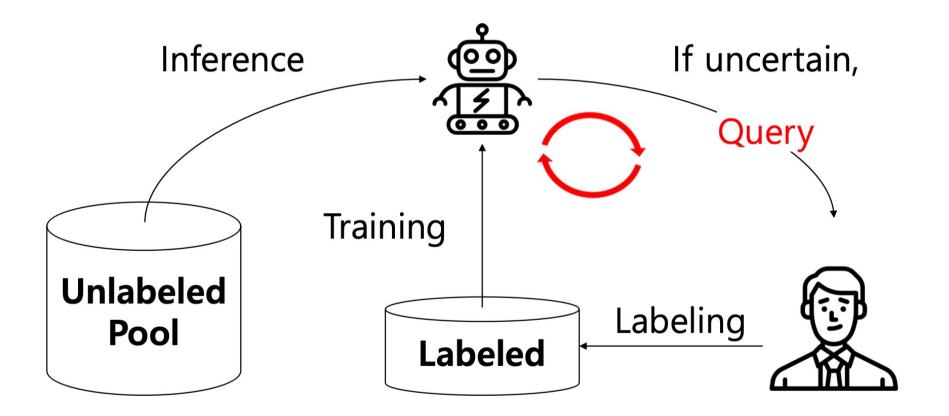
→ Active Learning is ABSOLUTELY NEEDED!

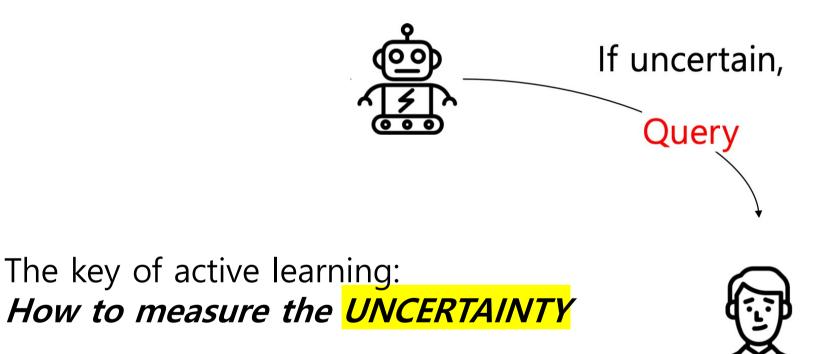




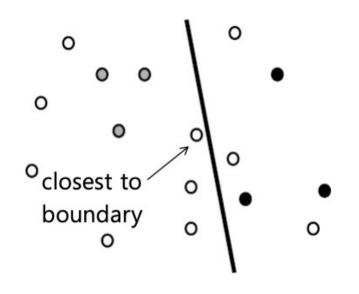








- Goal
 - Choosing the sample closest to the decision boundary.
- Methods
 - Least Confidence
 - Margin Sampling
 - Maximum Entropy



- Least Confidence
 - Choose the example where the top label had the smallest probability.

Data ID	Class A	Class B	Class C	Top 1	Query Priority
D1	0.1	0.2	0.7	0.7	4
D2	0.33	0.33	0.34	0.34	1
D3	0.41	0.39	0.2	0.41	3
D4	0.3	0.4	0.3	0.4	2

- Margin Sampling
 - The sample with the smallest difference between the top-1 confidence and the top-2 confidence is selected.

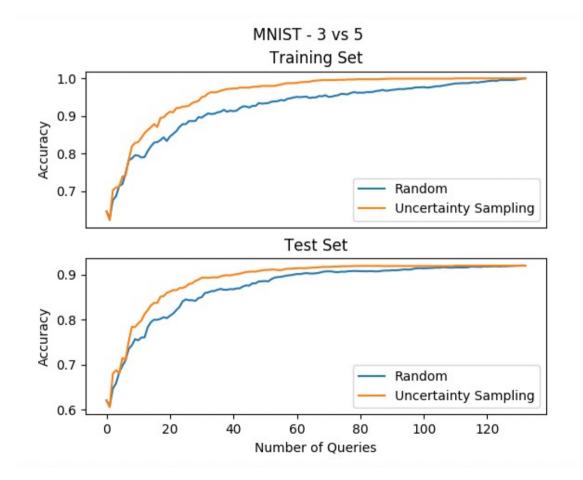
Data ID	Class A	Class B	Class C	Top 1 – Top 2	Query Priority
D1	0.1	0.2	0.7	0.5	4
D2	0.33	0.33	0.34	0.01	1
D3	0.41	0.39	0.2	0.02	2
D4	0.3	0.4	0.3	0.1	3

- Maximum Entropy
 - Choose the example which has the highest entropy.
 - Decision Rule:

$$\operatorname{H}(X) = -\sum_{i=1}^n \operatorname{P}(x_i) \log \operatorname{P}(x_i)$$

Data ID	Class A	Class B	Class C	Entropy	Query Priority
D1	0.1	0.2	0.7	0.8018	4
D2	0.33	0.33	0.34	1.0985	1
D3	0.41	0.39	0.2	1.0546	3
D4	0.3	0.4	0.3	1.0888	2

• Compared with Random Sampling

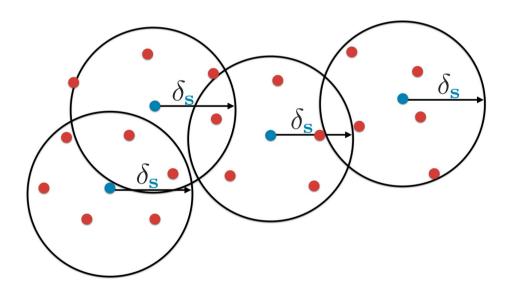


- Advantage
 - Easy to implement
 - High performance
- Disadvantage
 - Suffer from outlier
 - Ignored diversity

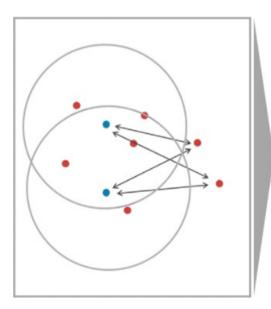
Recent Work

- CoreSet
 - Active Learning for Convolutional Neural Networks: A Core-set approach
 - Accepted at ICLR 2018
- Learning Loss
 - Learning Loss for Active Learning
 - Accepted as Oral at CVPR 2019

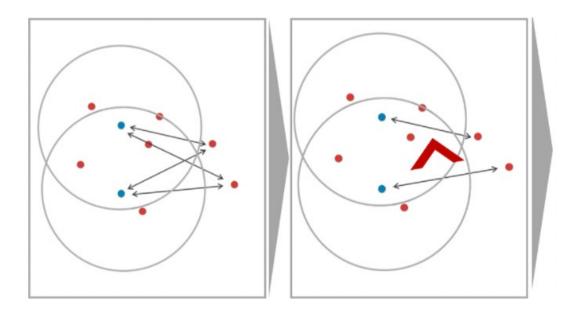
- Using feature in Deep Learning
- Batch Active Learning
- Find distinct data points from pre-selected subsets



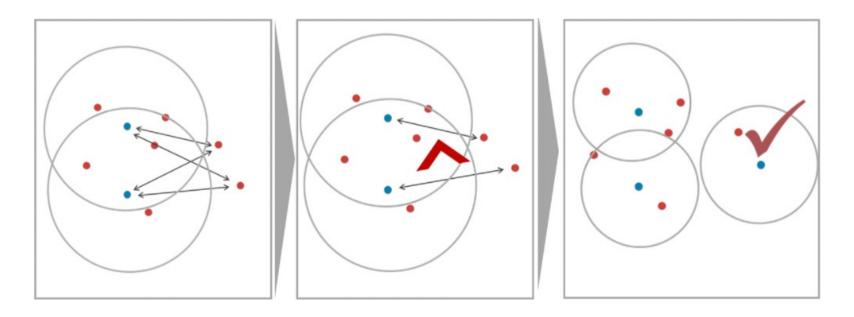
- k-Center-Greedy Algorithm
 - 1. Find the shortest distance between the data point and the center of the circle.



- k-Center-Greedy Algorithm
 - 1. Find the shortest distance between the data point and the center of the circle.
 - 2. Select the longest distance among them.

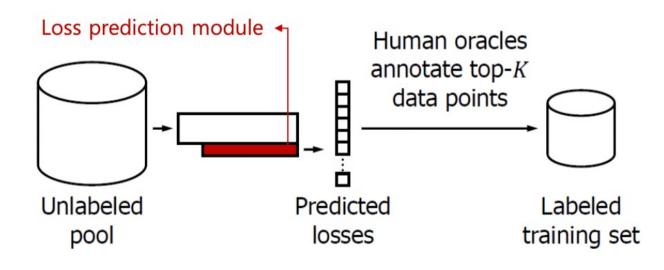


- k-Center-Greedy Algorithm
 - 1. Find the shortest distance between the data point and the center of the circle.
 - 2. Select the longest distance among them.
 - 3. Define new Core-set.

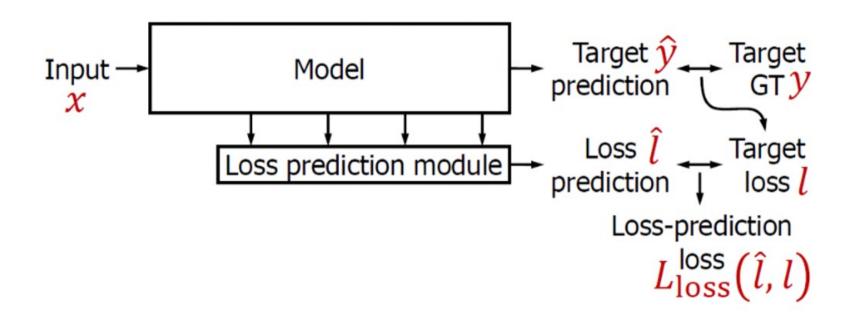


- Advantage
 - Easy to implement.
 - Efficient due to short search time.
- Disadvantage
 - Affected by the density of data.
 - Suffer from outlier.

- Concept
 - Query the sample which has highest loss from unlabeled data.
 - Add loss prediction module to predict top-k data points.



• Loss function



- Loss function
 - Constantly decreasing target loss during training.
 - Instead of MSE Loss, using Margin Ranking Loss.
 - MSE Loss:

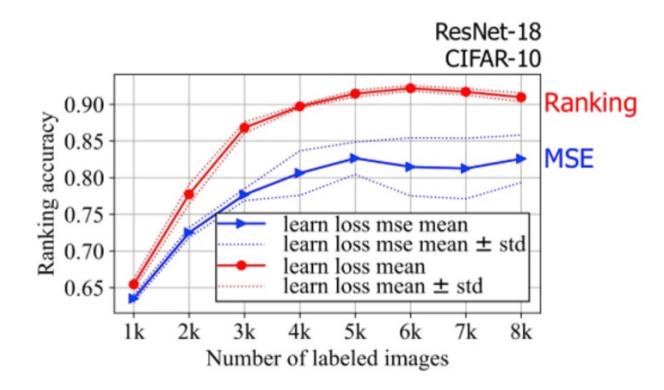
$$L_{loss}(\hat{l}, l) = \left\| \hat{l} - \mathbf{Q} \right\|^2$$

Scale changes

Margin Ranking Loss:

$$\begin{aligned} \text{Margin (=1)} \\ L_{\text{loss}}(\hat{l}_i, \hat{l}_j, l_i, l_j) &= \max(0, -\mathbf{1}(l_i, l_j) \cdot (\hat{l}_i - \hat{l}_j) + \mathbf{O}) \\ & \mathbf{A} \text{ pair of } \\ \text{predicted losses} & \text{where } \mathbf{1}(l_i, l_j) &= \begin{cases} +1, & \text{if } l_i > l_j \\ -1, & \text{otherwise} \end{cases} \end{aligned}$$

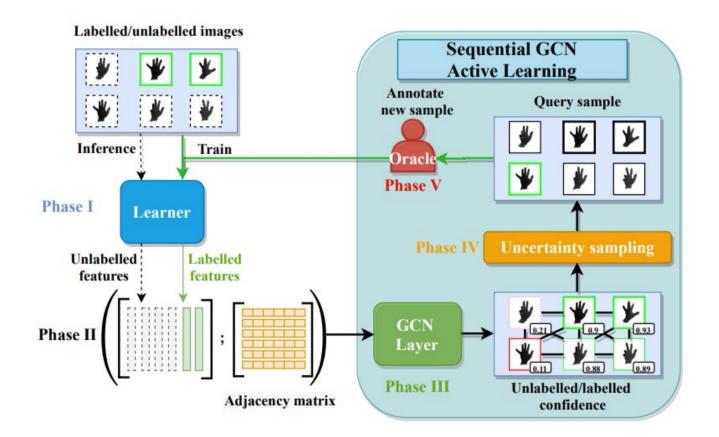
- Loss function
 - MSE Loss vs. Ranking Loss



- Advantage
 - Task-agnostic.
 - End-to-end training.
- Disadvantage
 - Not considered diversity and density.
 - Lack of correlation between the labeled and unlabeled data.

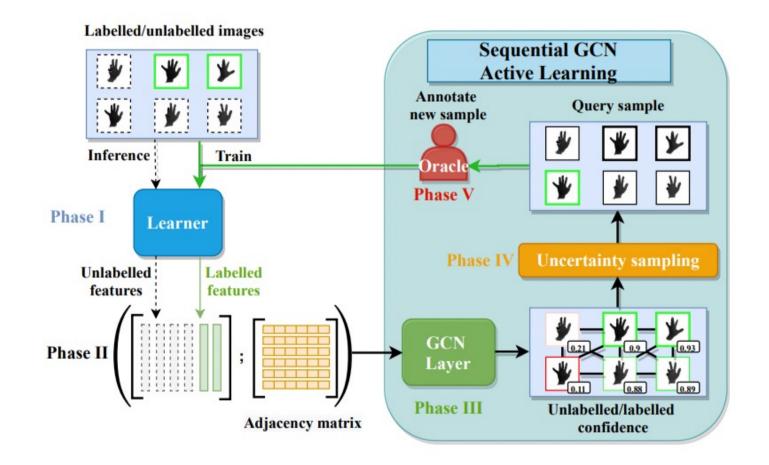
For Hand Pose Estimation

- Sequential Graph Convolutional Network for Active Learning
 - Accepted as Poster at CVPR 2021



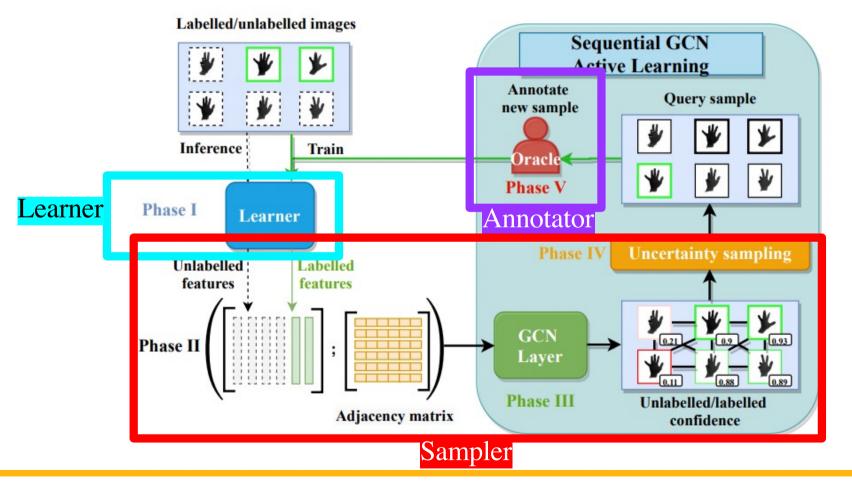
Components of AL framework

• Learner, Sampler, Annotator



Components of AL framework

• Learner, Sampler, Annotator



Learner

- Goal
 - Minimize the objective of target task.
 - Objective may change depending on the task to be dealt with.
- Classification
 - Objective function (cross-entropy):

$$\mathcal{L}^{c}_{\mathcal{M}}(\mathbf{x},\mathbf{y}; heta) = -rac{1}{N_{l}}\sum_{i=1}^{N_{l}}\mathbf{y}_{i}\log(f(\mathbf{x}_{i},\mathbf{y}_{i}; heta)),$$

Learner

- Goal
 - Minimize the objective of target task.
 - Objective may change depending on the task to be dealt with.
- Regression
 - Objective function:

$$\mathcal{L}_{\mathcal{M}}^{r}(\mathbf{x}, \mathbf{y}; \theta) = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} \left(\frac{1}{J} \sum_{j=1}^{J} \|\mathbf{y}_{i,j} - f(\mathbf{x}_{i,j}, \mathbf{y}_{i,j}; \theta)\|^{2} \right)$$

- Other tasks
 - Just modify the learner.
 - The rest of pipeline remains the same.

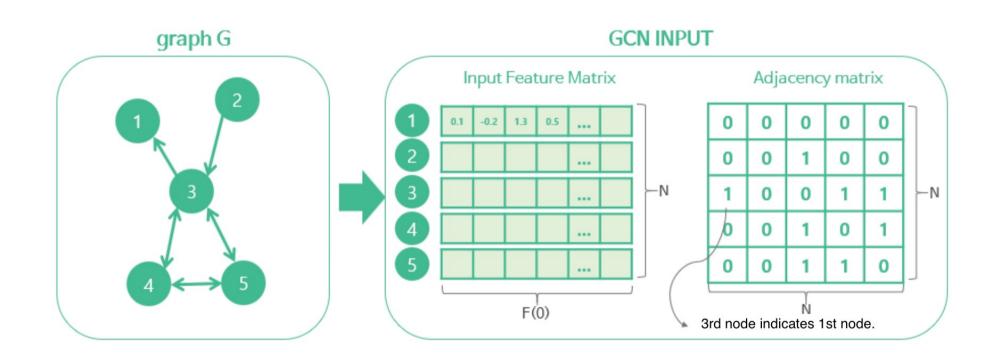
Sampler

- Goal
 - Select the representative unlabeled examples within a fixed budget to deliver the highest performance.
- Mechanism
 - From a pool of unlabeled dataset D_U, randomly select an initial batch for labelling D₀ ⊂ D_U.
 - Achieve minimum loss with the least number of batches D_n.

$$\min_{n}\min_{\mathcal{L}_{\mathcal{M}}}\mathcal{A}(\mathcal{L}_{\mathcal{M}}(\mathbf{x},\mathbf{y};\theta)|\mathbf{D}_{0}\subset\cdots\subset\mathbf{D}_{n}\subset\mathbf{D}_{U}).$$

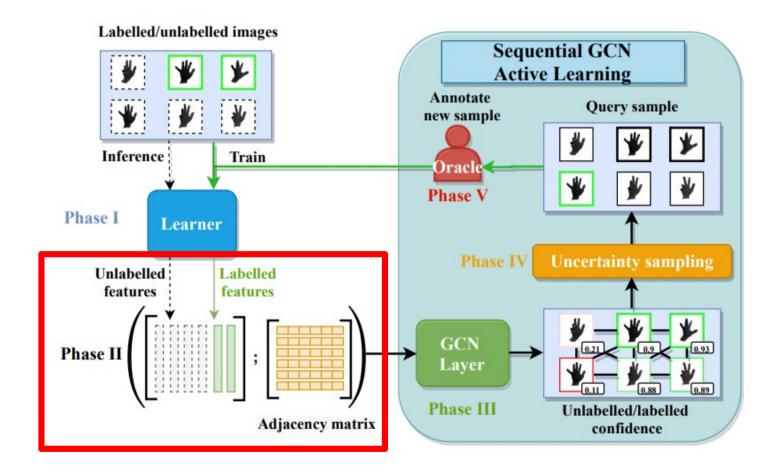
Sampler

• Graph Convolutional Network



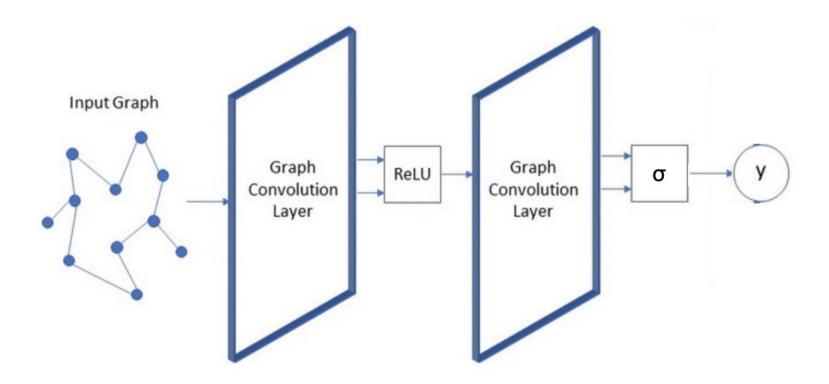
Sampler

• Graph Convolutional Network



Sampler

- Graph Convolutional Network
 - Proposed Architecture



Sampler • Graph Convolutional Network GCN 0.93 0.2 Layer Proposed Architecture 0.89 0.11 0.88 **Phase III** Unlabelled/labelled confidence Input Graph Graph Graph ReLU У σ Convolution Convolution Layer Layer

Sampler

• UncertainGCN: Uncertainty sampling on GCN

$$\mathbf{D}_L = \mathbf{D}_L \cup \underset{i=1\cdots b}{\operatorname{arg\,max}} |s_{margin} - f_{\mathcal{G}}(\mathbf{v}_i; \mathbf{D}_U)|.$$

• CoreGCN: CoreSet sampling on GCN

$$\mathbf{D}_L = \mathbf{D}_L \cup \operatorname*{arg\,max}_{i \in \mathbf{D}_U} \min_{j \in \mathbf{D}_L} \delta(f^1_\mathcal{G}(A, \mathbf{v}_i; \Theta_1), f^1_\mathcal{G}(A, \mathbf{v}_j; \Theta_1))$$

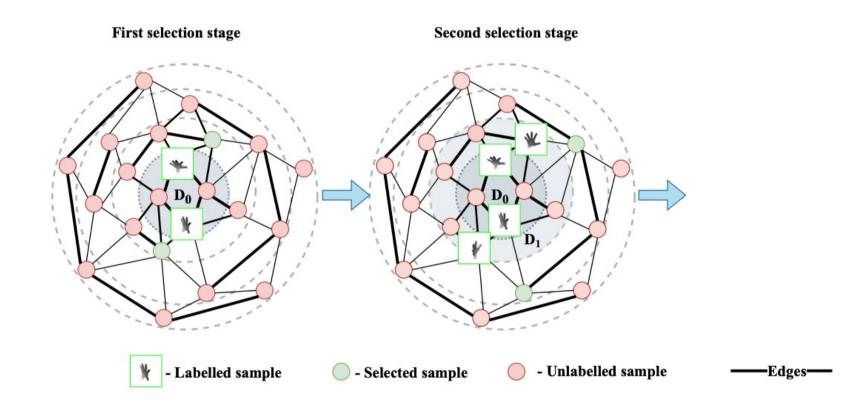
- After training on GCN, move to selection.
- From D_U , draw confidence scores $f_g(v_i; D_U)$ as output of GCN.
- Using this score, select the unlabeled images with UncertainGCN.
- Apply the following equation:

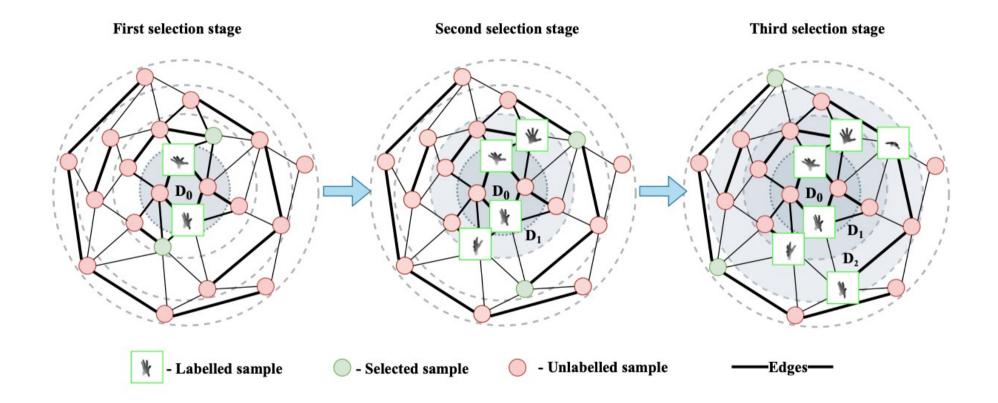
$$\mathbf{D}_L = \mathbf{D}_L \cup \underset{i=1\cdots b}{\operatorname{arg\,max}} |s_{margin} - f_{\mathcal{G}}(\mathbf{v}_i; \mathbf{D}_U)|.$$

First selection stage

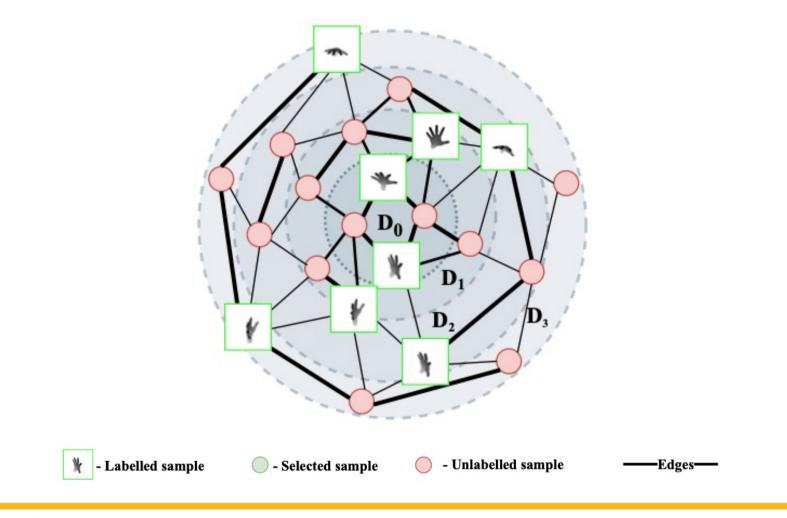
Image: Provide the sample

-Edges-





All selected images



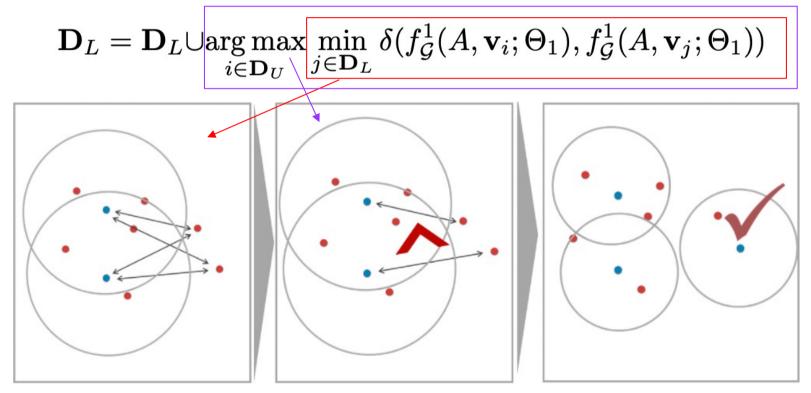
CoreGCN: CoreSet sampling on GCN

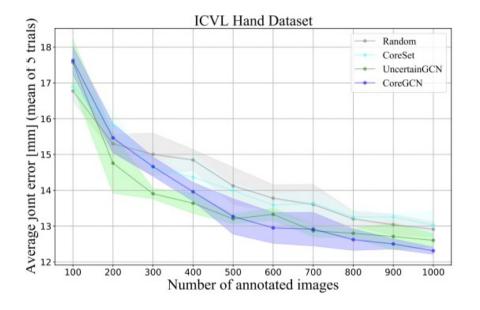
- Approach CoreSet technique
 - To integrate geometric information between the labeled and unlabeled graph representation.
 - Apply the following equation:

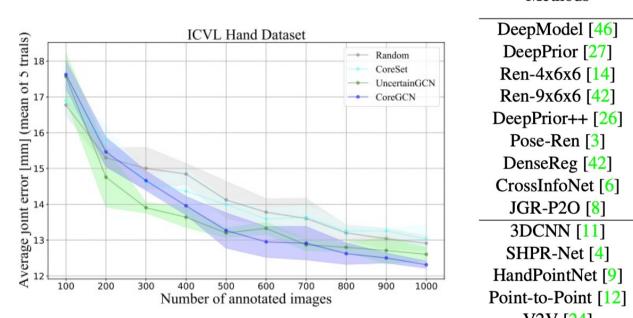
 $\mathbf{D}_L = \mathbf{D}_L \cup \operatorname*{arg\,max}_{i \in \mathbf{D}_U} \min_{j \in \mathbf{D}_L} \delta(f^1_\mathcal{G}(A, \mathbf{v}_i; \Theta_1), f^1_\mathcal{G}(A, \mathbf{v}_j; \Theta_1))$

CoreGCN: CoreSet sampling on GCN

- Approach CoreSet technique
 - To integrate geometric information between the labeled and unlabeled graph representation.
 - Apply the following equation:





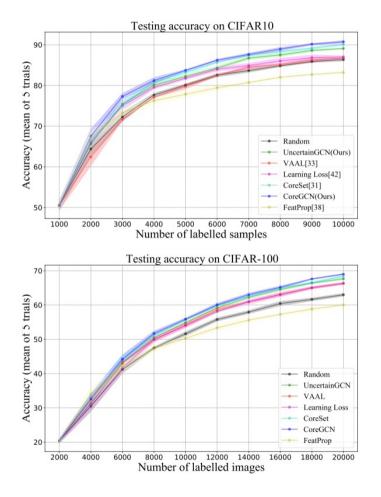


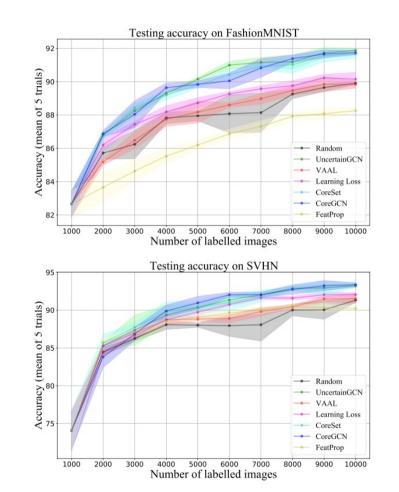
Methods	Mean error (mm)			Input	Tuna
	ICVL	MSRA	NYU	Input	Туре
DeepModel [46]	11.56	-	17.04	2D	R
DeepPrior [27]	10.4	-	19.73	2D	R
Ren-4x6x6 [14]	7.63	-	13.39	2D	R
Ren-9x6x6 [42]	7.31	9.7	12.69	2D	R
DeepPrior++ [26]	8.1	9.5	12.24	2D	R
Pose-Ren [3]	6.79	8.65	11.81	2D	R
DenseReg [42]	7.3	7.2	10.2	2D	D
CrossInfoNet [6]	6.73	7.86	10.08	2D	R
JGR-P2O [8]	6.02	7.55	8.29	2D	D
3DCNN [11]	-	9.6	14.1	3D	R
SHPR-Net [4]	7.22	7.76	10.78	3D	R
HandPointNet [9]	6.94	8.5	10.54	3D	R
Point-to-Point [12]	6.3	7.7	9.10	3D	D
V2V [24]	6.28	7.59	8.42	3D	D

	Methods	Mean error (mm)			Input	Tuna
	Methods		MSRA	NYU	Input	Туре
ICVL Hand Dataset	DeepModel [46]	11.56	-	17.04	2D	R
ICVL Hand Dataset	DeepPrior [27]	10.4	-	19.73	2D	R
Coreset	Ren-4x6x6 [14]	7.63	-	13.39	2D	R
0 17	Ren-9x6x6 [42]	7.31	9.7	12.69	2D	R
	DeepPrior++ [26]	8.1	9.5	12.24	2D	R
$\overline{\Xi}^{16}$	Pose-Ren [3]	6.79	8.65	11.81	2D	R
	DenseReg [42]	7.3	7.2	10.2	2D	D
14 etto	CrossInfoNet [6]	6.73	7.86	10.08	2D	R
	JGR-P2O [8]	6.02	7.55	8.29	2D	D
0.13	3DCNN [11]	-	9.6	14.1	3D	R
⁵ ¹³ ¹² ¹² ¹⁰⁰ ²⁰⁰ ³⁰⁰ ⁴⁰⁰ ⁵⁰⁰ ⁶⁰⁰ ⁷⁰⁰ ⁸⁰⁰ ⁹⁰⁰ ¹⁰⁰⁰	SHPR-Net [4]	7.22	7.76	10.78	3D	R
	HandPointNet [9]	6.94	8.5	10.54	3D	R
100 200 300 400 500 600 700 800 900 1000 Number of annotated images	Point-to-Point [12]	6.3	7.7	9.10	3D	D
	V2V [24]	6.28	7.59	8.42	3D	D

	Methods	Mean error (mm)			Input	Tune		
	wienious	ICVL	MSRA	NYU	- Input	Туре		
ICVL Hand Dataset	DeepModel [46]	11.56	-	17.04	2D	R		
ICVL Hand Dataset	DeepPrior [27]	10.4	-	19.73	2D	R		
Coreset	Ren-4x6x6 [14]	7.63	-	13.39	2D	R		
→ UncertainGCN	Ren_0x6x6 [1]	731	07	12 60	2D	P		
Sequential GCN for AL: 1,000 labeled images vs.								
Conventional SOTA: 16,004 labeled images								
₹ 12 100 200 300 400 500 600 700 800 900 1000	HandPointNet [9]	6.94	8.5	10.54	3D	R		
100 200 300 400 500 600 700 800 900 1000 Number of annotated images	Point-to-Point [12]	6.3	7.7	9.10	3D	D		
	V2V [24]	6.28	7.59	8.42	3D	D		

• Image Classification





Conclusion

- Benefit of Active Learning
 - The more important data is picked, the lower the cost and the higher the performance will be.
- Compared with Semi-supervised learning
 - Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation
 - -Meta Reality Labs
- Limitations
 - Need more elaborate method.
- Future work
 - Apply to Interacting-hand Pose Estimation.

References

- 1. Razvan Caramalau, Binod Bhattarai, and Tae-Kyun Kim. Sequential Graph Convolutional Network for Active Learning. In CVPR, 2021.
- 2. Sener and Silvio Savarese. Active Learning for Convolutional Neural Networks: A Core-set approach. In ICLR, 2018.
- 3. Donggeun Yoo and In So Kweon. Learning Loss for Active Learning. In CVPR, 2019.

