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Motivation

* Success of Supervised Learning

- A large number of learnable parameters

- Availability for large-scale annotated data
e Limitations

- Annotating requires a lot of effort

- Expensive

- Time-consuming
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Motivation

* Success of Supervised Learning

- A large number of learnable parameters
- Availability for large-scale annotated data
e Limitations
- Annotating requires a lot of effort
- Expensive
- Time-consuming
* Solution
- Identify the most influencing and discriminative examples to annotate.

- Efficiently select the most meaningful samples.

= Active Learning is ABSOLUTELY NEEDED!
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About Active Learning

* Concept

| @D If uncertain,
ofc;}\

The key of active learning:
How to measure the UNCERTAINTY
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Uncertainty Sampling
e Goal

- Choosing the sample closest to the decision boundary.
e Methods
- Least Confidence

- Margin Sampling

O
- Maximum Entropy o ©0
O
o o)
O closest to /o
boundary
O
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Uncertainty Sampling

e [ east Confidence

- Choose the example where the top label had the smallest probability.

Data ID Class A Class B Class C
D1 0.1 0.2 0.7 0.7 4
D2 0.33 0.33 0.34 0.34 1
D3 0.41 0.39 0.2 0.41 3
D4 0.3 0.4 0.3 0.4 2
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Uncertainty Sampling
e Margin Sampling

- The sample with the smallest difference between the top-1 confidence and the
top-2 confidence is selected.

Data ID Class A Class B Class C
D1 0.1 0.2 0.7 0.5 4
D2 0.33 0.33 0.34 0.01 1
D3 0.41 0.39 0.2 0.02 2
D4 0.3 0.4 0.3 0.1 3
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Uncertainty Sampling

e Maximum Entropy

- Choose the example which has the highest entropy.

« Decision Rule:

H(X) =— z“: P(z;)log P(x;)

Data ID Class A Class B Class C
D1 0.1 0.2 0.7 0.8018 4
D2 0.33 0.33 0.34 1.0985 1
D3 0.41 0.39 0.2 1.0546 3
D4 0.3 0.4 0.3 1.0888 2
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Uncertainty Sampling

e Compared with Random Sampling
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Uncertainty Sampling

e Advantage
- Easy to implement
- High performance
e Disadvantage
- Suffer from outlier

- [gnored diversity
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Recent Work

e CoreSet

- Active Learning for Convolutional Neural Networks: A Core-set approach
- Accepted at ICLR 2018

e Learning Loss

- Learning Loss for Active Learning

- Accepted as Oral at CVPR 2019
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CoreSet

* Concept

- Using feature in Deep Learning
- Batch Active Learning

- Find distinct data points from pre-selected subsets
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CoreSet

e k-Center-Greedy Algorithm

1. Find the shortest distance between the data point and the center of the circle.
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CoreSet

e k-Center-Greedy Algorithm

1. Find the shortest distance between the data point and the center of the circle.

2. Select the longest distance among them.
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CoreSet

* k-Center-Greedy Algorithm
1. Find the shortest distance between the data point and the center of the circle.
2. Select the longest distance among them.

3. Define new Core-set.
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CoreSet

e Advantage

- Easy to implement.

- Efficient due to short search time.
e Disadvantage

- Affected by the density of data.

« Suffer from outlier.
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Learning Loss

* Concept

- Query the sample which has highest loss from unlabeled data.
- Add loss prediction module to predict top-k data points.

Loss prediction module «
Human oracles

annotate top-K

E data points 8

=
Unlabeled Predicted Labeled
pool losses training set
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Learning Loss

¢ .oss function

Input —

Model
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Learning Loss

* Loss function
- Constantly decreasing target loss during training.
- Instead of MSE Loss, using Margin Ranking Loss.
- MSE Loss:

LIOSS(Z'I) = ”Z —CDIZ

Scale changes

- Margin Ranking Loss:
Margin (=1)

Lloss(ii» i], li, l]) = max(O, —l(li, l]) . (Zl o i]) 4’@

*
A pair of ‘\) e :
predicted losses where 1(11., lj) — {+1, ifl; > .l]
A pair of —1, otherwise
real losses

-
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Learning Loss

¢ .oss function

- MSE Loss vs. Ranking Loss

ResNet-18
CIFAR-10
_0.90 g detese IRaNking
Q y <l
< i SR A - (A — O Sy RO
§ 085 ++—1+—F4—1— MSE
QO T—xF =T 1 | =
0 |
E 0] S Z > learn loss mse mean
g 0.70 4 L& learn loss mse mean * std
LF —e&— |earn loss mean
0.651 % ~ |learn loss mean * std
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Learning Loss

e Advantage
- Task-agnostic.
- End-to-end training.
e Disadvantage
- Not considered diversity and density.

« Lack of correlation between the labeled and unlabeled data.
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For Hand Pose Estimation

e Sequential Graph Convolutional Network for Active Learning

= Accepted as Poster at CVPR 2021

Labelled/unlabelled images

/ Sequential GCN
Active Learning
Annotate

new sample Orerysamplc

@&_wv*

Phase V "’ # “'

Inference !

" '
'
g 1 4 lI .
A 2N HEE X
l: .
A
o m

Unlabelled ! Labelled
features : features

l)ll;l\(‘ l\; i PR Pon 2 O m A o % o _me y

\_  Phase III Unlabelled/labelled
Adjacency matrix \ confidence

-

B uzasa - Vo



Components of AL framework

e Learner, Sampler, Annotator

Labelled/unlabelled images

- / Sequential GCN \
¥ Active Learning
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Components of AL framework
3 =N SamplefAnnotator

Labelled/unlabelled images

Sequential GCN \
Astive Learning

.................. Annotate

*’ ” & new sample

Query sample
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Learner
e Goal

- Minimize the objective of target task.
- Objective may change depending on the task to be dealt with.

e (Classification

- Objective function (cross-entropy):

Ny
1
Lia(x,¥;60) = =3 > " yilog(f(xi,y:;0)),

=1
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Learner
e Goal

- Minimize the objective of target task.
- Objective may change depending on the task to be dealt with.

e Regression

- Objective function:

1 N; 1 J
M yi0) = 3 3 (5 D0 Iy = Fxivi5:0)11)
i=1 j=1

e Other tasks
- Just modify the learner.

- The rest of pipeline remains the same.
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Sampler
e Goal

- Select the representative unlabeled examples within a fixed budget to deliver
the highest performance.

¢ Mechanism

- From a pool of unlabeled dataset D;, randomly select an initial batch for
labelling D, € Dy,.

- Achieve minimum loss with the least number of batches D,,.

min min A(Lp(x,y;6)|Do C--- CD,, CDyp).

nLM
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Sampler

e Graph Convolutional Network

graph G GCN INPUT
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Sampler

e Graph Convolutional Network

Labelled/unlabelled images

[ Sequential GCN

[ Active Learning

Annotate
new sample

Query sample
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Sampler

e Graph Convolutional Network

- Proposed Architecture

Input Graph

RelU
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Sampler

e Graph Convolutional Network

- Proposed Architecture

Input Graph
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Sampler
e UncertainGCN: Uncertainty sampling on GCN

D,=DpU arg m%X|Sma'r'gin — fg (Vz'; DU)|
g

e CoreGCN: CoreSet sampling on GCN

Dy, = DyUargmax min §(f5(4,vi;01), f5(4,v;;01))
’I:EDU ]EDL

Pa i gd K-k
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UncertainGCN: Uncertainty sampling on GCN

e After training on GCN, move to selection.
* From Dy, draw confidence scores f(v;; Dy) as output of GCN.

 Using this score, select the unlabeled images with UncertainGCN.

e Apply the following equation:

Dr,=DpU arg m%X|3margin — fg (Vz'§ DU)|
P
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UncertainGCN: Uncertainty sampling on GCN

First selection stage

% - Labelled sample - Selected sample () -Unlabelled sample ——Edges=——
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UncertainGCN: Uncertainty sampling on GCN

First selection stage Second selection stage

% - Labelled sample - Selected sample () -Unlabelled sample ——Edges=——
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UncertainGCN: Uncertainty sampling on GCN

First selection stage Second selection stage Third selection stage

% - Labelled sample - Selected sample () -Unlabelled sample ——Edges=——
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UncertainGCN: Uncertainty sampling on GCN

All selected images

% - Labelled sample - Selected sample () - Unlabelled sample —FEdges—
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CoreGCN: CoreSet sampling on GCN

» Approach CoreSet technique

- To integrate geometric information between the labeled and unlabeled graph
representation.

- Apply the following equation:

D, = DyUarg max min (5(fé(A,V7;;@1),fé(A,Vj;@ﬂ)
i€Dy JEDL
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CoreGCN: CoreSet sampling on GCN

» Approach CoreSet technique

- To integrate geometric information between the labeled and unlabeled graph
representation.

- Apply the following equation:

D :D 1 1 A is 1 A i
5 LUalzélgnficjrgglL 6(fg(A,vi;01), f(A,v;;01))
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Experiment

e 3D Hand Pose Estimation

ICVL Hand Dataset
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Average joint error [mm| (mean ot 5 trials)

Experiment

e 3D Hand Pose Estimation

ICVL Hand Dataset
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Mean error (mm)

Methods ICVL MSRA NYU Input Type
DeepModel [46] 11.56 - 17.04 2D R
DeepPrior [27] 104 - 19.73 2D R
Ren-4x6x6 [14] 7.63 - 13.39 2D R
Ren-9x6x6 [42] 7.31 9.7 12.69 2D R
DeepPrior++ [26] 8.1 9.5 1224 2D R
Pose-Ren [3] 6.79 8.65 11.81 2D R
DenseReg [42] 1.3 7.2 10.2 2D D
CrossInfoNet [6] 6.73 7.86 10.08 2D R
JGR-P20 [¢] 6.02 7.55 8.29 2D D
3DCNN [11] - 9.6 14.1 3D R
SHPR-Net [4] 122 7.76  10.78 3D R
HandPointNet [9] 6.94 8.5 10.54 3D R
Point-to-Point [12] 6.3 7.7 9.10 3D D
V2V [24] 6.28 7.59 8.42 3D D
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Experiment

e 3D Hand Pose Estimation

Methods Input Type
2 ICVL Hand Dataset DeepModel [46] 2D R
£ 1 Random DeepPrior [27] 2D R
o i e 7 Ren-4x6x6 [14] 2D R
o 17—\ +— CoreGCN Ren-9x6x6 [42] 2D R
g DeepPrior++ [26] 2D R
= |9 Pose-Ren [3] 2D R
Es { | ‘ DenseReg [42] 2D D
E . CrossInfoNet [6] 2D R
2 — JGR-P20 [¢] 2D D
s 3DCNN [11] 3D R
g SHPR-Net [4] 3D R
2 300 400 500 600 700 HandPOintNet [9] 3D R
Number of annotated images Point-to-Point [12] 3D D
V2V [24] 3D D
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Experiment

e 3D Hand Pose Estimation

Mean error (mm) Input Type
ICVL§ MSRA NYU

17.04 2D R
19.73 2D R
2D

Methods

ICVL Hand Dataset DeepModel [46]

DeepPrior [27]
Ren 4x6x6 [14]

Sequential GCN for AL: 1 OOO labeled 1 1mages
VS.
Conventional SOTA: 16,004 labeled images

300

of 5 trials)
®

HandPointNet [©]
Point-to-Point [ 2]
V2V [24]

400 500 600 700
Number of annotated images

8.5 1054 3D
Bl 9.10 3D
1:59 842 3D
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Experiment

* Image Classification
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Testing accuracy on FashionMNIST
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Conclusion

» Benefit of Active Learning

- The more important data is picked, the lower the cost and the higher the
performance will be.

e Compared with Semi-supervised learning

- Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation
- Meta Reality Labs
e Limitations
- Need more elaborate method.

e Future work

- Apply to Interacting-hand Pose Estimation.
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