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• Success of Supervised Learning
▪ A large number of learnable parameters
▪ Availability for large-scale annotated data

• Limitations
▪ Annotating requires a lot of effort

▪ Expensive
▪ Time-consuming
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• Success of Supervised Learning
▪ A large number of learnable parameters
▪ Availability for large-scale annotated data

• Limitations
▪ Annotating requires a lot of effort

▪ Expensive
▪ Time-consuming

• Solution
▪ Identify the most influencing and discriminative examples to annotate.

▪ Efficiently select the most meaningful samples.

è Active Learning is ABSOLUTELY NEEDED!
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• Concept 
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• Concept 

The key of active learning:
How to measure the UNCERTAINTY
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• Goal
▪ Choosing the sample closest to the decision boundary.

• Methods
▪ Least Confidence
▪ Margin Sampling

▪ Maximum Entropy
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• Least Confidence
▪ Choose the example where the top label had the smallest probability.
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• Margin Sampling
▪ The sample with the smallest difference between the top-1 confidence and the 
top-2 confidence is selected.
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• Maximum Entropy
▪ Choose the example which has the highest entropy.
▪ Decision Rule:
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• Compared with Random Sampling
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• Advantage
▪ Easy to implement
▪ High performance

• Disadvantage
▪ Suffer from outlier

▪ Ignored diversity
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• CoreSet
▪ Active Learning for Convolutional Neural Networks: A Core-set approach
▪ Accepted at ICLR 2018

• Learning Loss
▪ Learning Loss for Active Learning

▪ Accepted as Oral at CVPR 2019



CoreSet

19

• Concept
▪ Using feature in Deep Learning
▪ Batch Active Learning

▪ Find distinct data points from pre-selected subsets
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• k-Center-Greedy Algorithm
1. Find the shortest distance between the data point and the center of the circle.
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• k-Center-Greedy Algorithm
1. Find the shortest distance between the data point and the center of the circle.
2. Select the longest distance among them.
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• k-Center-Greedy Algorithm
1. Find the shortest distance between the data point and the center of the circle.
2. Select the longest distance among them.

3. Define new Core-set.
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• Advantage
▪ Easy to implement.
▪ Efficient due to short search time.

• Disadvantage
▪ Affected by the density of data.

▪ Suffer from outlier.
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• Concept
▪ Query the sample which has highest loss from unlabeled data.
▪ Add loss prediction module to predict top-k data points.
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• Loss function
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• Loss function
▪ Constantly decreasing target loss during training.
▪ Instead of MSE Loss, using Margin Ranking Loss.

▪ MSE Loss:

▪ Margin Ranking Loss:
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• Loss function
▪ MSE Loss vs. Ranking Loss



Learning Loss

28

• Advantage
▪ Task-agnostic.
▪ End-to-end training.

• Disadvantage
▪ Not considered diversity and density.

▪ Lack of correlation between the labeled and unlabeled data.
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• Sequential Graph Convolutional Network for Active Learning
▪ Accepted as Poster at CVPR 2021
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• Learner, Sampler, Annotator
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• Learner, Sampler, Annotator

AnnotatorLearner

Sampler



Learner

32

• Goal
▪ Minimize the objective of target task.
▪ Objective may change depending on the task to be dealt with.

• Classification
▪ Objective function (cross-entropy):
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• Goal
▪ Minimize the objective of target task.
▪ Objective may change depending on the task to be dealt with.

• Regression
▪ Objective function:

• Other tasks
▪ Just modify the learner.

▪ The rest of pipeline remains the same.
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• Goal
▪ Select the representative unlabeled examples within a fixed budget to deliver 
the highest performance.

• Mechanism
▪ From a pool of unlabeled dataset DU, randomly select an initial batch for 
labelling D0 ⊂DU.
▪ Achieve minimum loss with the least number of batches Dn.
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• Graph Convolutional Network
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• Graph Convolutional Network
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• Graph Convolutional Network
▪ Proposed Architecture
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• Graph Convolutional Network
▪ Proposed Architecture
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• UncertainGCN: Uncertainty sampling on GCN

• CoreGCN: CoreSet sampling on GCN
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• After training on GCN, move to selection.
• From DU, draw confidence scores fg(vi; DU) as output of GCN.
• Using this score, select the unlabeled images with UncertainGCN.
• Apply the following equation:
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CoreGCN: CoreSet sampling on GCN
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• Approach CoreSet technique
▪ To integrate geometric information between the labeled and unlabeled graph 
representation.

▪ Apply the following equation:
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• Approach CoreSet technique
▪ To integrate geometric information between the labeled and unlabeled graph 
representation.

▪ Apply the following equation:
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• 3D Hand Pose Estimation
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• 3D Hand Pose Estimation

Sequential GCN for AL: 1,000 labeled images
vs.

Conventional SOTA: 16,004 labeled images
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• Image Classification
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• Benefit of Active Learning
▪ The more important data is picked, the lower the cost and the higher the 
performance will be.

• Compared with Semi-supervised learning
▪ Active Learning with Pseudo-Labels for Multi-View 3D Pose Estimation

−Meta Reality Labs

• Limitations
▪ Need more elaborate method.

• Future work
▪ Apply to Interacting-hand Pose Estimation.
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