Anomaly Segmentation in Driving Scene

2022 하계 세미나

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented by 강병우

Outline

- Background
 - Anomaly detection (AD)
 - Previous anomaly detection methods
 - Inabilities of previous anomaly segmentation methods
- Synboost
 - [1] Pixel-wise Anomaly Detection in Complex Driving Scenes (CVPR, 2021)
- PEBAL
 - [2] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)

- Anomaly Detection (AD)
 - Process of locating unusual points or patterns in a set of data
 - High variance of driving scene normal data
 - No anomalous data during training
 - Various anomalous objects are critical for driving scene

Texture AD

< Fishyscapes L&F >

< Fishyscapes static >

< Road anomaly >

- Anomaly Detection (AD)
 - Datasets
 - -Fishyscapes lost & found, Fishyscapes static, Road anomaly

< Fishyscapes lost & found >

쉬강대학교 Sogang University

< Fishyscapes static >

< Road anomaly >

- Anomaly Detection (AD)
 - Metrics
 - -Average precision (AP)

Section Area under the graph line in the precision-recall curve (AUPRC)

- False positive rate at 95% true positive rate (FPR95)

Separate Percentage of negative answers judged to be correct

- Anomaly Detection (AD)
 - Previous anomaly segmentation methods
 - Uncertainty-based anomaly segmentation
 - Estimate higher uncertainty for inputs that are anomalies than normal based on segmentation prediction map
 - Estimated uncertainty is often high at object boundaries
 - Sig Yield many false positive predictions on the pixel level

< Softmax entropy based anomaly segmentation >

- Anomaly Detection (AD)
 - Previous anomaly segmentation methods
 - Anomaly segmentation via outlier exposure
 - Score Outliers from ImageNet or COCO void class of Cityscape
 - Requires re-training the segmentation network as a multi-task model
 - SOutlier exposure can lead to a deterioration of the segmentation of inliers

< Outlier training data >

< deterioration of the segmentation of inliers >

7

- Anomaly Detection (AD)
 - Previous anomaly segmentation methods
 - Inabilities of existing anomaly segmentation methods

- [1] Pixel-wise Anomaly Detection in Complex Driving Scenes (CVPR, 2021)
 - Framework
 - Extract softmax entropy, softmax distance, segmentation map
 - Softmax entropy : Segmentation prediction Entropy per each pixel
 - Softmax distance : Difference between the two largest softmax values
 - Segmentation map : Synthesize the image based on the segmentation map
 - Detect anomalies by comparing input and synthesized image

- [1] Pixel-wise Anomaly Detection in Complex Driving Scenes (CVPR, 2021)
 - Dissimilarity module
 - Combines features to predict the anomaly segmentation map
 - Feature extractor of Input and synthesized image share same weights
 - For detect various scale of objects, concatenate 4 kind scales of correlated blocks at decoder blocks

• [1] Pixel-wise Anomaly Detection in Complex Driving Scenes (CVPR, 2021)

- [1] Pixel-wise Anomaly Detection in Complex Driving Scenes (CVPR, 2021)
 - Experiment

	Mothod	FS L&F		FS Static		FS Web Oct. 2020		CS
	Method		↓FPR95	↑AP	↓FPR95	↑AP	↓FPR95	↑mIOU
No Retrain	Softmax Entropy [14]	2.93	44.83	15.41	39.75	16.61	39.79	80.30
	Embedding Density [4]	4.65	24.36	62.14	17.43	29.16	38.80	80.30
	Image Resynthesis++ [24]	5.70	48.05	29.60	27.13	12.46	51.29	83.50
	Ours	43.22	15.79	72.59	18.75	61.31	18.89	83.50
Retrain	Bayesian DeepLab [27]	9.81	38.46	48.70	15.50	35.80	25.67	73.80
	Dirichlet DeepLab [26]	34.28	47.43	31.30	84.60	30.02	76.62	70.50
	Outlier Head [3]	30.92	22.18	84.02	10.34	63.99	18.79	77.30

Table 1. **Comparison between anomaly segmentation methods**. Our method achieves higher AP and lower FPR95 than previous methods that do not compromise segmentation performance (class mIOU on Cityscapes). It also achieves second-best performance when compared to all existing approaches.

- [1] Pixel-wise Anomaly Detection in Complex Driving Scenes (CVPR, 2021)
 - Failure cases
 - When both softmax entropy and image resynthesis fail to detect an anomaly object, it will always display wrong final prediction
 - Not accurate to detecting small and distant anomalous objects

PEBAL

• [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)

PEBAL lpal lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - Abstention learning : "Add an anomaly class"
 - Using Abstention learning to solve overconfident segmentation problem
 - Requires penalty factor to regularize the classification of anomalous pixels
 - Adaptive penalties are required for different pixels in a complex driving scene

Penalty factor
$$a_{\omega} = (-E_{\theta}(\mathbf{x})_{\omega})^2$$

< Miss classified >

< Noisy classified >

< Non detected >

PEBAL lpal lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - Energy-biased abstention learning
 - -Basically, Energy based on physics

S: The lower the energy, the more stable, the higher the energy, the more unstable

- $E_{\theta}(\mathbf{x})_{\omega}$ computed with the logsum poperator
- -Penalty factor a_{ω} using $E_{ heta}(\mathbf{x})_{\omega}$

Ste Outlier : high energy and lower penalty factor

Similar: low energy and higher penalty factor

[1] Tian, Yu, et al. "Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes." (ECCV 2022)
 [2] Liu, Ziyin, et al. "Deep gamblers: Learning to abstain with portfolio theory." (NIPS 2019)

Background Synboost PEBAL

PEBAL lpal lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - . ℓ_{pal}
 - [2] Deep Gamblers: Learning to Abstain with Portfolio Theory

$$\max_{f} W(\mathbf{b}(f), \mathbf{p}) = \max_{\mathbf{w}} \sum_{i}^{B} \log \left[f_{\mathbf{w}}(x_{i})_{j(i)} o + f_{\mathbf{w}}(x_{i})_{m+1} \right]$$

 $\lim_{x \to \infty} \Pr(j|x) = f(x)_j$

✓ Probability of x feature belongs to j class

$$\lim_{\mathbf{w}} \max \mathbb{E}[\log p(j|x)] = \max_{\mathbf{w}} \mathbb{E}[\log f_{\mathbf{w}}(x)_j]$$

✓ Learning to find the w value with max probability that the x feature belongs to j class

\lesssim Classification as a horse race

 \checkmark o value means betting money

 \checkmark Adding abstention term to consider the horse loses the game

PEBAL lpal lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - . ℓ_{pal}

$$\ell_{pal}(\theta, \mathbf{y}, \mathbf{x}, E_{\theta}(\mathbf{x})) = -\sum_{\omega \in \Omega} \log \left(f_{\theta}(y_{\omega}; \mathbf{x})_{\omega} + \frac{f_{\theta}(Y+1; \mathbf{x})_{\omega}}{a_{\omega}} \right)$$

 $f_{\theta}(y_{\omega}; \mathbf{x})_{\omega}$: logit of inlier class $f_{\theta}(Y + 1; \mathbf{x})_{\omega}$: logit of outlier class

- Adaptive penalties are required for different pixels in a complex driving scene
- ℓ_{pal} mitigate the overconfident problem of segmentation network
 - S: Inlier case

✓ High penalty factor means inlier logit is dominant

Si: Outlier case

 \checkmark Low penalty factor means inlier logit and outlier logit are dominant

Penalty factor
$$a_{\omega} = (-E_{\theta}(\mathbf{x})_{\omega})^2$$
 $E_{\theta}(\mathbf{x})_{\omega} = -\log \sum_{y \in \{1,...,Y\}} \exp(f_{\theta}(y;\mathbf{x})_{\omega})$

PEBAL lpal lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - . ℓ_{ebm}
 - -EBM losses effectively create an energy gap between normal and abnormal pixels
 - -Inlier case

 \pm : If energy of inlier pixel is higher than m_{in} , loss reduce the energy of liner pixel

-Outlier case

 \pm : If energy of inlier pixel is lower than m_{out} , loss reduce the energy of liner pixel

$$\ell_{ebm}^{in}(E_{\theta}(\mathbf{x})) = \sum_{\omega \in \Omega} \left(\max(0, E_{\theta}(\mathbf{x})_{\omega} - m_{in}) \right)^2 \qquad \ell_{ebm}^{out}(E_{\theta}(\mathbf{x})) = \sum_{\omega \in \Omega} \left(\max(0, m_{out} - E_{\theta}(\mathbf{x})_{\omega}) \right)^2$$

PEBAL lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - . ℓ_{reg}
 - Smoothness regularization

Fail to classify neighboring anomaly pixels inside boundary of anomalous object

Search Neighboring pixels are not that abruptly different energy

- Sparsity regularization

sent the sentence of the sente

 \pm : Most of the pixels are inlier classes, so their energy is low

$$\ell_{reg}(E_{\theta}(\mathbf{x})) = \sum_{\omega \in \Omega} \beta_1 |E_{\theta}(\mathbf{x})_{\omega} - E_{\theta}(\mathbf{x})_{\mathcal{N}(\omega)}| + \beta_2 |E_{\theta}(\mathbf{x})_{\omega}|,$$
Smoothness Sparsity

PEBAL lpal lebm lreg

• [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)

- ℓ_{pal} : Mitigate the overconfident problem of segmentation network
- ℓ_{ebm} : Effectively create an energy gap between normal and abnormal pixels
- ℓ_{reg} : Considering smoothness and sparsity of anomalous objects

PEBAL lpal lebm lreg

- [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)
 - AnomalyMix
 - Cuts the anomalous objects from an outlier dataset and paste them into the images of the inlier dataset

Scontaining a combination of inlier and outlier pixels

- Balanced learning and keeping the visual context of inlier labels
- Can form a potentially infinite number of training images for outlier dataset

PEBAL lpal lebm lreg

• [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)

PEBAL lpal lebm lreg

• [1] Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (ECCV, 2022)

Models	re-training	Extra Network	OoD Data	FS LostAndFound		FS Static	
models				$AP\uparrow$	$\text{FPR95}\downarrow$	$AP\uparrow$	$FPR95 \downarrow$
Discriminative Outlier Detection Head [2]	 ✓ 	 ✓ 	 ✓ 	31.31	19.02	96.76	0.29
MSP [18]	×	×	×	1.77	44.85	12.88	39.83
Entropy [19]	×	×	×	2.93	44.83	15.41	39.75
SML [21]	×	×	×	31.05	21.52	53.11	19.64
kNN Embedding - density [4]	×	×	×	3.55	30.02	44.03	20.25
Bayesian Deeplab [35]	 ✓ 	×	×	9.81	38.46	48.70	15.05
Density - Single-layer NLL [4]	×	 ✓ 	×	3.01	32.9	40.86	21.29
Density - Minimum NLL [4]	×	 ✓ 	×	4.25	47.15	62.14	17.43
Image Resynthesis [31]	×	 ✓ 	×	5.70	48.05	29.6	27.13
OoD Training - Void Class	 ✓ 	×	 ✓ 	10.29	22.11	45.00	19.40
Dirichlet Deeplab [34]	 ✓ 	×	 ✓ 	34.28	47.43	31.30	84.60
Density - Logistic Regression [4]	×	 ✓ 	 ✓ 	4.65	24.36	57.16	13.39
SynBoost [11]	×	 ✓ 	 ✓ 	43.22	15.79	72.59	18.75
Ours	×	×	 	44.17	7.58	92.38	1.73

Thank you for listening

