Skeleton-Based Human Action Recognition

송 재 훈

Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

Outline

- Human Action Recognition 이란
- Introduction
- Application
- Action Recognition from Skeletons
- Flow of Action Recognition
- Datasets
- ST-GCN paper
- ST-GCN 이후 research

Introduction

- Human Action Recognition
 - 사람의 행동을 분류하는 작업
 - 사람의 모든 행동은 목적을 달성하기 위해 수행된다
 - Machines는 이를 배우고 이해할 수 있어야 함

Introduction

- Levels of visual source understanding
 - Object-level understanding
 - Tracking-level understanding
 - Pose-level understanding
 - Activity-level understanding

Application

- Many potential applications of action recognition systems
 - Video Retrieval
 - Video Surveillance
 - Health Care
 - Human-Computer Interaction
 - Entertainment Industry
 - • • • •
- HW/SW의 발전으로 실생활에 적용 가능

Action Recognition from Skeletons

- Human actions can be efficiently represented by skeletons
- Free of background clutter / lighting conditions / clothing variations

Flow of Action Recognition

• Training Flow

SOGANG UNIVERSITY

Datasets

- NTU RGB+D and NTU RGB+D 120
 - ✓ RGB videos / depth map sequences / 3D skeleton data / infrared (IR) videos 제공
 - ✔ Microsoft Kinect V2 camera를 3개 사용
 - ✓ 3D skeleton data : 257 major body joints
 - ✓ NTU RGB+D : 60 action classes (56,880 video samples)
 - ✓ NTU RGB+D 120 : 120 action classes (114,480 video samples)
 - ✓ Cross-subject (actor 다름) 와 Cross-view (camera 위치 3개)
 - Sample frame의 modalities 예 :

Base Paper Information

- Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
- Authors : Sijie Yan, Yuanjun Xiong, Dahua Lin

Department of Information Engineering, The Chinese University of Hong Kong

• AAAI 2018

Abstract

- Spatial Temporal Graph Convolutional Networks(ST-GCN)로 불리는 dynamic skeleton의 새로운 모델 제안
- Data에서 spatial pattern과 temporal pattern을 모두 학습
- Spatial-temporal graph로 구성된 block을 여러 층으로 쌓은 구조

→ Spatial and temporal domain에 따라 information을 통합함

• ST-GCN은 skeleton-based action recognition task에 처음으로 GCN을 적용함

Previous Work

- Deep learning methods
 - CNN : model the skeleton data as a pseudo-image [1]

• RNN : model the skeleton data as a sequence of the coordinate vectors along

both the spatial and temporal dimensions

- Overlook inherent connectivity correlations between joints

Graph-based method

- Graph-based
 - Graphs naturally captures the structure of human body
 - Joints \rightarrow **nodes (or vertices)**, bones \rightarrow **edges**
 - No hand-crafted node traversal

 $\mathbf{G} = (\mathbf{V}, \mathbf{E})$

- Simple flow of ST-GCN
 - Input data가 multiple layer의 spatial-temporal graph conv. 연산을 거치면서 점차적으로 graph 상에 higher-level feature map이 생성됨
 - 이 feature map이 최종적으로 softmax를 거쳐 action class 분류

- Actions as Graph sequences
 - Structure : *N*-node graph with adjacency matrix A (normalized \hat{A})
 - Features : Joint locations X over T frames
 - Goal : Learn to classify graph sequences

- Feature learning with Graph Convolutional Nets (GCNs) ([1] Kipf *et al.*)
 - 1) Neighborhood feature aggregation
 - 2) Layer-wise feature update

- Feature extraction
 - Learn spatial-temporal features with spatial / temporal modules
 - Spatial : Neighborhood aggregation (GCNs)
 - Temporal : Node-wise sequence models (1d Conv)

GCNs + Temporal Models

- <u>Partition strategies</u> for constructing convolution operations
 - Uni-labeling : all nodes in a neighborhood has the same label (green)
 - Distance : two subsets are the root node (green) and neighboring points with

distance 1 (blue)

Spatial configuration : distances to the skeleton gravity center (black cross),

root node (green), shorter distance (blue), longer distance (yellow)

 \rightarrow 세 가지 모두 실험한 결과, 성능이 가장 좋은 Spatial configuration 방법을 적용함

• Implementing Spatial-GCN

normalized adjacency matrix

- Single frame case's formula (Kipf *et al*) : $\mathbf{f}_{out} = \underline{\Lambda^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\Lambda^{-\frac{1}{2}}\mathbf{f}_{in}\mathbf{W}}$
- Multiple subsets (i.e., spatial partition) : several matrixes A_j where $A + I = \sum_j A_j$

- Network architecture 및 algorithm 순서
 - 1) 동영상으로부터 skeleton을 추출
 - 2) skeleton data를 그래프 형태로 만듬
 - : 각 joints를 nodes로 만들고 nodes가 이어지는 부분(공간, 시간)을 edge로 연결
 - 3) 총 10개의 ST-GCN block을 통해 feature를 추출

4) Softmax 함수를 이용하여 행동을 분류

Experimental result 및 단점

- NTU RGB + D dataset
 - Conventional handcrafted method를 사용한 방법이나, RNN 또는 CNN based methods에 비해 가장 좋은 성능을 보여줌. (2018년 기준)

	actor	camera
	X-Sub	X-View
Lie Group (Veeriah, Zhuang, and Qi 2015)	50.1%	52.8%
H-RNN (Du, Wang, and Wang 2015)	59.1%	64.0%
Deep LSTM (Shahroudy et al. 2016)	60.7%	67.3%
PA-LSTM (Shahroudy et al. 2016)	62.9%	70.3%
ST-LSTM+TS (Liu et al. 2016)	69.2%	77.7%
Temporal Conv (Kim and Reiter 2017).	74.3%	83.1%
C-CNN + MTLN (Ke et al. 2017)	79.6%	84.8%
ST-GCN	81.5%	88.3%

- ST-GCN 모델의 단점
 - 관절의 관계성을 로컬 영역(연결된 관절 간의 관계)에서 밖에 찾지 못함 Ex) 멀리 떨어진 왼손과 오른발의 관계성을 찾는데 명시적이지 않음

ST-GCN 이후 Research

- Spatial GCN 성능 개선
- Temporal Conv. 성능 개선
- Attention mechanism (key feature attention)
- Architecture 변경
- Multi-stream 적용

[1] Lei *et al.* "Two-stream adaptive graph convolutional networks for skeleton-based action recognition" CVPR 2019 [2] Zhu et al. "Topology-learnable graph convolution for skeleton-based action recognition" Pat. Recog. Letters 2020

[3] Xu et al. "Multi-scale skeleton adaptive weighted GCN for skeleton-based human action recognition in IoT" Applied

Spatial GCN 개선

• Spatial graph convolution

• Adaptive GCN [1]: 기본 Adj. Mat.(A_k) + 연결성 및 연결 강도를 학습(B_k) + data (각 sample)

dependent graph로 joints의 similarity(C_k)학습 (1x1 conv. 임베딩 함수 이용)

• Topology learnable GCN [2] : Non-local mechanism이 추가로 필요하지 않다.

 L_k 를 A_k 로 초기화한 후 학습하면 성능이 더 좋다

• Adaptive weighted GCN [3]: 위와 비슷하지만 성능이 더 좋다 (Ablation 실험 없음)

Temporal features 개선

- Temporal convolution 구조 변경
 - Multi-scale 구조 [1]: bottleneck design (computational cost \downarrow) + kernel 3x1 + dilation rate 변경
 - OSA (one-shot aggregation) [2] : multiple kernels with different smaller size

Best kernel 조합은 1x1, 5x1, 9x1을

[1] Lei *et al.* "Two-stream adaptive graph convolutional networks for skeleton-based action recognition" CVPR 2019[2] Xu et al. "Multi-scale skeleton adaptive weighted GCN for skeleton-based human AR" Applied Soft Computing Journal 2021

Attention mechanism

- Attention helps the model pay more attention to important joints, frames and features
 - STC attention [1]: SAM + TAM + CAM 을 차례로 적용
 - ECA attention [2] 적용 : SAM, TAM light weight CAM인 ECA-Net [3] 적용

 Lei *et al.* "Spatio-Temporal Inception Graph Convolutional Networks for Skeleton-Based Action Recognition" ACM 2020
Li *et al.* "Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition" Sensors 2020

Architecture change

- 기존 CNN architecture들을 GCN 구조에 활용
 - Inception block (GoogLeNet) 구조를 참조한 architecture [1]: S=4, T=2 (branch 수)
 - Various variants 검토 [2] : extended spatial-temporal 구조

[1] Lei *et al.* "Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional Networks" Trans Img. Proc. 2020 [2] Xu et al. "Multi-scale skeleton adaptive weighted GCN for skeleton-based human AR" Applied Soft Computing Journal 2021

Multi-stream network

• Joints 좌표로 부족한 정보를 여러 information을 활용하여 성능 향상

• 4-stream network fusion [1] : joint / bone / joint motion / bone motion 정보 활용

학습된 4개 network를 ensemble하여 class prediction

• Multi-scale network [2] : 더 풍부한 spatial feature를 추출하기 위해 multi scale 적용

joints / relative joints / j_motion을 concat 후 9ch data input

25 joints와 10 joints (작은 joints 무시) 사용 후 feature fusion

[1] Lei *et al.* "Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional Networks" Trans Img. Proc. 2020 [2] Xu et al. "Multi-scale skeleton adaptive weighted GCN for skeleton-based human AR" Applied Soft Computing Journal 2021

Experiments

• Base ST-GCN 모델 대비 GCN 구조 변경, attention 적용, multi-stream, multi-scale network 등을 적용하여 성능이 많이 향상됨

[1]

Methods	CS (%)	CV (%)
Lie Group [6]	50.1	82.8
HBRNN [7]	59.1	64.0
Deep LSTM [14]	60.7	67.3
ST-LSTM [49]	69.2	77.7
STA-LSTM [8]	73.4	81.2
VA-LSTM [18]	79.2	87.7
Ind-RNN [9]	81.8	88.0
SRN+TSL [19]	84.8	92.4
TCN [20]	74.3	83.1
Clips+CNN+MTLN [50]	79.6	84.8
Synthesized CNN [21]	80.0	87.2
CNN+Motion+Trans [22]	83.2	89.3
3scale ResNet152 [23]	85.0	92.3
ST-GCN [10]	81.5	88.3
DPRL+GCNN [25]	83.5	89.8
ASGCN [27]	86.8	94.2
AGCN [16]	88.5	95.1
AGC-LSTM [26]	89.2	95.0
MS-AAGCN (ours)	90.0 ± 0.109	96.2 ± 0.095

[2]

Comparisons on NTU-RGB+D 60.

Methods	Cross-subject (%)	Cross-view (%)
HBRNN [80]	59.1	64.0
Deep LSTM [77]]	60.7	67.3
ST-LSTM [81]	69.2	77.7
STA-LSTM [82]	73.4	81.2
SRN-TSL [40]	84.8	92.4
ST-GCN [48]	81.5	88.3
2S-AGCN [52]	88.5	95.1
2S-AGCN [52]+Attention	89.4	96.0
MS-AWGCN(ours)	90.3	96.4

Conclusion

- Skeleton-based human action recognition task 에서...
- GCN을 적용한 network 적용으로 성능 향상이 많이 되었음
- ST-GCN의 경우 GCN을 통해 spatial feature 를 extraction 함
- ST-GCN 이후에도 spatial-temporal module 구조 변경 및 attention mechanism, architecture 변경, Multi-stream network 구성 등을 통해 성능이 향상되었음
- Action recognition 관련 참조 site
 - https://niais.github.io/Awesome-Skeleton-based-Action-Recognition/

Thank You

