DeepCap Monocular Human Performance Capture Using Weak Supervision 2020 연구실 하계 세미나

김 기 남

Vision & Display Systems Lab.

Dept. of Electronic Engineering, Sogang University

Outline

- GNN(Graph Neural Network)
- GCN(Graph Convolutional Network)
- GraphSAGE(GraphSAGE(SAmple and aggreGatE)
- How Powerful are Graph Neural Networks?
- References

Introduction

- What is Human Performance Capture?
 - The space-time coherent 4D capture of full pose and non-rigid surface deformation of people in general clothing.

Introduction

- Challenges
 - Disadvantages of 3D data
 - In previous work, normally need 3D annotation(high cost)
 - High cost to inference model
 - si: Multi-view camera, Depth camera

High-dimensional problem

- Input image: 2D
- Output result: 3D

Introduction

- Challenges
 - Disadvantages of 3D data
 - In previous work, normally need 3D annotation(high cost)
 - High cost to inference model
 - si: Multi-view camera, Depth camera

High-dimensional problem

- Input image: 2D
- Output result: 3D

Related Work

- Capture using parametric models
 - Pose estimation을 통해 추정된 Skeleton에 parameterize된 human body를 입히는 방식
 - 남성, 여성, 중성을 판단하고 각 성별에 맞는 parameter에 따라 body 생성

SMPL(Skinned Multi-Person Linear model)

- 옷 등의 형태 및 질감 표현 불가능

Related Work

- Template-free capture
 - Depth-based Template-free Capture
 - 한 개 또는 여러 개의 depth sensor를 사용하여 얻어진 3D data를 이용하여 Human object 에 대해 reconstruction
 - Slow motion 및 변화가 크지 않은 motion 에 대해서만 사용가능
 - Monocular Template-free Capture
 - 2D image input 에서 voxel단위로 CNN을 통하여 reconstruction
 - Frame간의 correspondence 를 고려하지 않아 application level 에 부적합

Related Work

- Template-based capture
 - Template mesh를 사용하여 capture
 - Multi-view monocular camera setting 을 통해 template mesh 추출
 - 🔅 multi-view setup 과정이 상당히 복잡함
 - ☆ input image 수가 너무 많아 computational cost가 상당히 높음

- Weak supervision 으로 학습하여 Single Monocular camera 를 이용한 inference 가능
- Input image의 skeleton 과 surface deformation parameter 를 estimation 하여 performance capture 수행
- Real-time 동작 가능(50ms/frame)

- Weak Supervision
 - Direct Supervision?

• Weak Supervision

- Training Data
 - 학습시에만 2D multi-view images 사용
 - Openpose를 이용하여 GT Skeleton 추출
 - 크로마키 기법을 이용하여 GT Foreground mask 추출

• Model Architecture

- Model Architecture
 - PoseNet

- Model Architecture
 - PoseNet

Kinematics Layer

Function $f_m(\boldsymbol{\alpha}, \boldsymbol{\theta}) \colon \mathbb{R}^{30} \to \mathbb{R}^3$ per landmark m

Skeletal pose

서강대학교

SOGANG UNIVERSITY

Camera and **root relative** 3D landmark

positions $P_{c',m}$

- Model Architecture
 - PoseNet

거강대함교

SOGANG UNIVERSITY

- Model Architecture
 - PoseNet

$$L_{kp}(\boldsymbol{P}) = \sum_{c} \sum_{m} \left\| \pi_{c}(\boldsymbol{P}_{m}) - \boldsymbol{p}_{c,m} \right\|_{2}^{2}$$

Projecting (π) 3D landmark P_m into camera view c

Comparing to 2D joint detection $p_{c,m}$

- Model Architecture
 - DefNet

시강대함교

SOGANG UNIVERSITY

- Model Architecture
 - DefNet

Rigid transform for landmark *m* **and vertex** *i*

Camera and root relative

3D landmark $M_{c',m}$ and vertex $V_{c',i}$

Global

3D landmark M_m and vertex V_i

- Model Architecture
 - DefNet

Multi-view Sparse Keypoint Graph Loss

$$L_{kpg}(\boldsymbol{P}) = \sum_{c} \sum_{m} \left\| \pi_{c}(\boldsymbol{M}_{m}) - \boldsymbol{p}_{c,m} \right\|_{2}^{2}$$

 M_m : Global 3D landmark

- Model Architecture
 - DefNet

Non-rigid Silhouette Loss

$$L_{sil}(\boldsymbol{V}) = \sum_{c} \sum_{i \in B_{c}} \left\| D_{c} \left(\pi_{c}(\mathbf{V}_{i}) \right) \right\|_{2}^{2}$$

 B_c : Set of boundary vertices for camera c

 D_c : Distance transform image

• Experimental result

• Experimental result

3DPCK and AMVIoU (in %) on S4 sequence		
Method	3DPCK↑	AMVIoU^
1 camera view	62.11	65.11
2 camera views	93.52	78.44
3 camera views	94.70	79.75
7 camera views	95.95	81.73
6500 frames	85.19	73.41
13000 frames	92.25	78.97
PoseNet-only	96.74	78.51
Ours(14 views, 26000 frames)	96.74	82.53

Thank you

