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• GNN(Graph Neural Network)

• GCN(Graph Convolutional Network)

• GraphSAGE(GraphSAGE(SAmple and aggreGatE)

• How Powerful are Graph Neural Networks?

• References



Introduction
• What is Human Performance Capture?

▪ The space-time coherent 4D capture of full pose and non-rigid surface deformation of people 

in general clothing.
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Introduction
• Challenges

▪ Disadvantages of 3D data

− In previous work, normally need 3D annotation(high cost)

− High cost to inference model

҉ Multi-view camera, Depth camera

▪ High-dimensional problem

− Input image: 2D

− Output result: 3D
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Related Work
• Capture using parametric models

▪ Pose estimation을통해추정된 Skeleton에 parameterize된 human body를입히는방식

− 남성, 여성, 중성을판단하고각성별에맞는 parameter에따라 body 생성

҉ SMPL(Skinned Multi-Person Linear model)

− 옷등의형태및질감표현불가능
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Related Work
• Template-free capture

▪ Depth-based Template-free Capture

−한개또는여러개의 depth sensor를사용하여얻어진 3D data를이용하여 Human object 에대해
reconstruction

− Slow motion 및변화가크지않은 motion 에대해서만사용가능

▪ Monocular Template-free Capture

− 2D image input 에서 voxel단위로 CNN을통하여 reconstruction

− Frame간의 correspondence 를고려하지않아 application level 에부적합
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Related Work
• Template-based capture

▪ Template mesh를사용하여 capture

− Multi-view monocular camera setting 을통해 template mesh 추출

҉ multi-view setup 과정이상당히복잡함

҉ input image 수가너무많아 computational cost가상당히높음
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DeepCap
• Weak supervision 으로학습하여 Single Monocular camera 를이용한 inference 가능

• Input image의 skeleton 과 surface deformation parameter 를 estimation 하여
performance capture 수행

• Real-time 동작가능(50ms/frame)
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DeepCap
• Weak Supervision

▪ Direct Supervision?

10

Difficult to obtain

Ground truth 3D pose

Ground truth 3D surface 



DeepCap
• Weak Supervision
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DeepCap
• Training Data

▪ 학습시에만 2D multi-view images 사용

▪ Openpose를이용하여 GT Skeleton 추출

▪ 크로마키기법을이용하여 GT Foreground mask 추출
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Openpose

크로마키



DeepCap

• Model Architecture
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DeepCap
• Model Architecture

▪ PoseNet
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DeepCap
• Model Architecture
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• Model Architecture

▪ PoseNet
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DeepCap
• Model Architecture

▪ DefNet
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• Model Architecture

▪ DefNet
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DeepCap
• Model Architecture

▪ DefNet
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DeepCap
• Experimental result
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Thank you

24


